
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025 5515015

Boosting Universal Domain Adaptation in Remote
Sensing With Dual-Classifiers Consistency

Discrimination and Cross-Domain
Feature Mixup

Qingmei Li , Yang Zhang , Juepeng Zheng , Member, IEEE, Yuxiang Zhang,
Jianxi Huang , Senior Member, IEEE, and Haohuan Fu , Senior Member, IEEE

Abstract— In the field of remote sensing (RS) image classifi-
cation, domain adaptation (DA) methods have been extensively
utilized to overcome the challenges posed by data discrepancies
between source and target domains that arise from varying
imaging conditions, sensor differences, or geographical varia-
tions. Stemming from the existence of unseen classes in both
the source and target domains, universal DA (UniDA) poses the
greatest challenge that demands innovative solutions. Existing
UniDA methods often overlook intra-domain variations within
the target domain and face difficulties in distinguishing between
similar known and unknown classes, which significantly hinder
cross-domain transfer. To overcome these challenges, we propose
a dual-classifier network tailored for cross-domain classification
of RS images, named DCmix. DCmix introduces a dual-classifiers
network that utilizes both closed-set and open-set classifiers to
improve the accuracy of identifying unknown sample classes.
To our knowledge, this is the first attempt to introduce dual
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classifiers into the UniDA RS image classification task. We further
enhance the feature generalization capability of the target domain
based on sample neighborhood relations, resulting in a more
adaptable and robust feature representation. A cross-domain fea-
ture mixup (FM) scheme is also designed based on the consistency
discrimination of the dual classifiers, achieving smoother decision
boundaries and simpler hidden layer representations. Extensive
experiments conducted on four hyperspectral image datasets and
three RGB datasets prove that the introduced approach attains
state-of-the-art (SOTA) performance in RS image classification
under the UniDA scenario.

Index Terms— Consistency discrimination, cross-domain image
classification, feature mixup (FM), remote sensing (RS), universal
domain adaptation (UniDA).

I. INTRODUCTION

REMOTE sensing image classification serves as a pivotal
tool for fine-grained analysis of the Earth’s surface

with applications spanning land use mapping [1], agricultural
management [2], [3], and disaster monitoring [4]. The advent
of deep learning (DL) techniques has brought significant
advances in remote sensing (RS) image classification [5], [6],
such as deep belief networks (DBNs) [7], convolutional neural
networks (CNNs) [8], [9], generative adversarial networks
(GANs) [10], stacked auto-encoder (SAE) [11], and Trans-
former [12]. Traditional methods rely heavily on handcrafted
feature extraction, which is both time-consuming and often
limited in performance. In contrast, DL methods automati-
cally extract multilayered feature representations, significantly
enhancing classification accuracy. For instance, CNNs [8],
[9] effectively capture local features in RS images through
convolutional layers, enabling deep understanding of complex
scenes. GANs [10] employ adversarial training between a
generator and a discriminator to generate high-quality RS
image samples, thereby alleviating the scarcity of labeled
data and enhancing the generalization capabilities of models.
Despite these significant advances, DL methods often need
extensive labeled data for training, and their performance
tends to degrade when applied to domains with different char-
acteristics, such as changes in image acquisition conditions
or geographic locations, posing challenges for cross-domain
classification.
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To bridge the gap in the cross-domain scenario, domain
adaptation (DA) has emerged as a solution, facilitating the
effective transfer of knowledge acquired from a labeled
domain to an unfamiliar domain. DA methods can be broadly
classified into four categories: closed-set DA [13], [14], [15],
partial DA [16], [17], [18], open-set DA [19], [20], and
universal DA (UniDA) [21], [22], [23], [24]. Closed-set DA
refers to scenarios where the source and target domains include
identical classes. Shi et al. [14] proposed an unsupervised DA
method for SAR target classification, aligning simulated and
real domain distributions using gradient-weighted adversarial
alignment and prototypical network-based class-level align-
ment, enhanced with contrastive learning and pseudo-label
filtering. Partial DA assumes that the source domain contains
categories that are not present in the target domain, while
open-set DA considers that the target domain may include
classes that are absent in the source domain. Ma et al. [18]
introduced the partial domain adversarial neural network,
which mitigates negative transfer by down-weighting outlier
source samples and performing partial weighted alignment
between target and source domains for crop yield prediction.
Zheng et al. [20] investigated the open-set DA scenarios in the
RS cross-scene classification by employing a multiadversarial
open-set DA network that integrates attention-aware open-set
backpropagation, auxiliary adversarial learning, and adaptive
entropy suppression. UniDA poses the most challenging sce-
nario, as it aims to handle the general case where both partial
overlap and unknown classes may exist.

UniDA scenario is really common in real-world RS applica-
tions. For instance, when we conduct a forest inventory using
RS images (tree species classification), exploring specific tree
species in advance remains a time-consuming and laborious
task. Within the field of RS, despite the various methods
proposed for DA scenarios, UniDA for RS images is still not
receiving much attention. Xu et al. [22] introduced the UniDA
approach for RGB image classification, model adaptation
(MA), and source data generation–MA (SDG-MA), which
involves setting a manual threshold to filter out unknown
instances, as shown in Fig. 1(a). Our previous work, HyU-
niDA, achieved remarkable transfer learning for hyperspectral
images (HSIs) [24]; however, we noticed that the clustering
accuracy in the target domain can be influenced by the choice
of initial conditions. Most existing methods only focus on
feature alignment and ignore the interaction learning between
classifiers, which is crucial to improving the classification
performance of unknown categories. As Fig. 1(b) and (c)
describes, one-vs-all classifiers train a binary classifier for
each category, learning to distinguish between positive and
negative classes, thus simplifying the decision-making process
and making it more robust to the presence of unknown classes.
Saito and Saenko [25] proposed the OVANet based on one-
vs-all classifiers, using the inter-class distance among source
classes to determine the threshold. However, an application
of entropy minimization as a sole criterion for classification
can result in the failure to properly identify unknown classes,
potentially misleading the analysis by misdirecting attention
toward incorrectly classified samples.

To overcome these challenges, we introduce a method
that leverages one-vs-all (OVA) classifiers for UniDA in

Fig. 1. Approaches of existing UniDA methods and one-vs-all classifiers
in handling unknown instances. (a) Manual threshold definition for unknown
instance rejection. (b) and (c) How OVA classifiers work by training a binary
classifier for each category and learning to distinguish between positive and
negative classes, respectively.

RS image classification, named DCmix, which combines
a dual-classifiers consistency discrimination network with a
cross-domain feature mixup (FM) strategy. The diverse envi-
ronmental conditions, sensor types, or imaging angles cause
significant discrepancies across different domains (i.e., inter-
domain variations), even within the same class in a given
domain, due to wide coverage (i.e., intra-domain variations).
We identify reliable neighbors for each sample, maximize
their pairwise similarity to minimize intra-domain variations,
and measure neighbor confidence to acquire invariant features
that effectively generalize to the target domain. However,
relying solely on feature representation learning is insufficient
to fully mitigate the effect of category shift, especially in
the presence of unknown class samples. Therefore, we pro-
pose a cross-domain FM approach, which explicitly simulates
unknown samples by utilizing arbitrary intermediate states of
mixups between domains, smoothing the transfer process, and
enhancing the identification of unknown classes. Nevertheless,
FM may lead to misidentification of known class instances.
To address the issue, we design the dual-classifiers consistency
discrimination that establishes consistency between closed-set
and open-set classifiers, aiming to optimize known category
samples that are wrongly identified as unknown while main-
taining the capability to detect unknown samples. Through
combining these techniques, our proposed DCmix is able to
more effectively distinguish similar items from both known
and unknown categories in the target domain, thus enhancing
overall classification capability. Our experiments on four HSI
datasets and three RGB datasets highlight its excellence,
achieving state-of-the-art (SOTA) results.

To sum up, this work provides the following key contribu-
tions to the RS field.

1) We propose a dual-classifier network tailored for
cross-domain RS images classification, leveraging both
open-set classifiers and closed-set classifiers to enhance
the accuracy of identifying unknown sample classes.
To our knowledge, this is the first work to intro-
duce the dual-classifiers to the DA task of RS image
classification.
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2) We enhance the feature generalization ability of the
target domain based on the neighborhood relation of
samples, which involves the processes of reliable neigh-
bor search, similarity maximization, and confidence
measurement, ultimately leading to a more adaptable and
robust feature representation within the target domain.

3) We develop a cross-domain FM scheme based on the
constraints of dual-classifiers consistency discrimination,
and achieve smoother decision boundaries and simpler
hidden layer representations by explicitly simulating any
intermediate state of the unknown class.

The subsequent sections are structured as follows.
In Section II, we briefly review the related works in the
DA field. Section III provides an in-depth explanation of the
proposed method, followed by a description of our datasets in
Section IV. The performance evaluation, along with extensive
experiments and analyses, is presented in Section V. Lastly,
we conclude the article in Section VI.

II. RELATED WORK

A. Universal DA
UniDA describes a situation where both the source and

target domains share some common labels, but each domain
also contains private labels not found in the other [21],
[26], [27]. The objective of UniDA is to correctly classify
target samples either into one of the known labels or an
unknown label without any prior knowledge. You et al. [21]
proposed the idea of UniDA and designed UAN to discover
the shared and private label sets by exploiting both domain
similarity and prediction uncertainty for individual samples.
CMU and H-score were proposed by Fu et al. [28] to
improve accuracy in open class detection. All the approaches
mentioned above manually set and adjust a threshold to
detect common and unknown samples, which limits their
extension to more practical scenarios. To address this issue,
Chang et al. [29] proposed UniOT to find common classes
without a hand-tuned threshold and used global statisti-
cal information of the assignment matrix to distinguish
common and private classes internally. In RS community,
Xu et al. [22] introduced a UniDA approach for RGB image
classification, including MA DA SDG-MA. C3DA proposed
by Guo et al. [23] has an ensemble criterion for “unknown”
classes fusing confidence, consistency, and certainty of sam-
ples to achieve higher performance under the UniDA scenario.
Our previous work HyUniDA achieved remarkable transfer
performance for HSIs based on the shared semantic pairing
and domain similarity score [24]. In distinction to prior
advancements, our method proposes a dual-classifier network
for cross-domain RS image classification, including feature
alignment, mixup, and consistency discrimination.

B. Mixup Approaches
Data augmentation techniques, particularly mixup, have

gained significant attention in the field of unsupervised DA
(UDA). Initially proposed by Zhang et al. [30], mixup gen-
erates synthetic samples by linearly interpolating between
pairs of training examples, which enhances model general-
ization. Prior studies [31], [32] utilized classifier predictions

as pseudo-labels for target instances, and incorporated vanilla
mixup within the target domain to enhance prediction stability
and robustness. Diverging from the aforementioned tech-
nique, Tranheden et al. [33] extended this idea for semantic
segmentation with DACS by replacing vanilla mixup with
ClassMix [34], which merges pixels from different classes and
positions. Manifold mixup [35] enhances model performance
by learning smoother decision boundaries, capturing high-level
information through deep layer interpolation, and flattening
class representations.

The consistency constraint indeed plays a critical role in
DA. Different consistency training methods vary in how to
generate data perturbation and how the consistency loss is
composed. Methods such as AutoAugment [36], population-
based augmentation (PBA) [37], and RandAugment [38] use
policy search to generate optimal data augmentation strategies,
thereby enhancing model consistency. By using consistent
prediction as a constraint, French et al. [39] integrated a
mean teacher model to achieve DA. Notably, Xiao et al. [40]
employed data augmentation techniques with image rotation
to establish a connection between self-supervised learning and
consistency learning.

Despite these advancements, these methods are not directly
applicable to UniDA due to category-shift issues, where sim-
ulating unknown-class samples is crucial. To address this,
we introduce a cross-domain FM scheme, where mixup
features exhibit a low probability of belonging to known
categories, enhancing the identification of unknown classes.
The consistency constraint maximizes the mutual information
between the transformed data and the main task labels.

C. OVA Classifiers
The OVA classifiers involve training a separate binary

classifier for each class, where each classifier distinguishes
one class from all other classes [41]. This strategy is pri-
marily employed to extend binary classifiers for multiclass
classification problems, like support vector machines, logistic
regression, etc. [41], [42]. OVA approaches have been found to
uncover more pertinent hidden representations for unidentified
samples compared to the widely used Softmax function, thus
improving the accuracy and interpretability of DL models [43].
Padhy et al. [44] revisited OVA classifiers to enhance pre-
diction uncertainty and out-of-distribution (OOD) detection,
showcasing that OVA can better calibrate predictions com-
pared to the standard softmax approach. Saito and Saenko [25]
proposed OVANet to avoid manually setting thresholds for
rejecting unknown samples in UniDA by letting the open-set
classifiers focus on hard negative samples. Based on the
framework of OVANet [25], we further explore the correla-
tion between closed-set and open-set classifiers to optimize
UniDA’s performance.

III. METHODOLOGY

In this section, we present a thorough explication of the
designed DCmix model, including three modules: feature
alignment based on neighborhood relation, cross-domain FM,
and dual-classifiers consistency discrimination, as well as the
overall objective of the model. The feature alignment module
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aims to reduce intra-domain variations by identifying reliable
neighbors for each sample and maximizing their pairwise
similarity. Then, the cross-domain FM module explicitly sim-
ulates unknown categories by generating intermediate feature
representations between source and target domains, enhancing
the identification of unknown classes. Finally, by enforcing
alignment between closed-set and open-set classifiers, the
dual-classifiers consistency discrimination module improves
the classification accuracy of known samples while preserving
the model’s ability to identify unknown samples. Fig. 2
presents an outline of the proposed DCmix.

A. Problem Setting
In the UniDA scenario, we face the challenge of classifying

unknown target domain Dt
= {(xt

i )}
nt
i=1 using labeled source

domain Ds
= {(xs

i , ys
i )}

ns
i=1. The source data consists of

ns labeled samples, while the target data has nt unlabeled
samples. Cs and Ct represent the label sets for source and
target domains, respectively. C = Cs ∪ Ct signifies the label
set encompassing all classes from both domains. We aim to
categorize each target instance into a class from the source
class set Cs or the “unknown” class set Ct = Ct \C that
represents classes exclusive to the target domain.

B. Feature Alignment
If feature embeddings are properly trained on both source

and target domains, the features of target samples located
within adjacent regions are likely to belong to the identical
category. The local regions that preserve this homogeneity
are defined as invariant spaces in this study. By exploiting
the invariance of neighboring samples, we mitigate cross-
domain variations and learn the discriminative features to more
effectively distinguish classes within the target domain.

The features of all target samples are stored in a memory
bank M = RH×W×B×nt . The entry ei ∈ RH×W×B contains
the feature associated with target sample x t

i , which undergoes
a dynamic updating process after each mini-batch cycle and
unified via L2 normalization to maintain stability. The L2
normalization ensures that all feature vectors have the same
scale, reducing the influence of numerical imbalances during
training and enhancing the stability of the alignment process

ei ←
F

(
x t

i

)∥∥F(
x t

i

)∥∥
2

(1)

where F(x t
i ) is the feature extracted by the classifier. The

probability that x t
j and x t

i are classified into the same category
can be calculated as

Pi j =
exp(δ · ei e j )∑nt

h=1 exp(δ · ei eh)
(2)

where eh represents the feature vector of the hth sample (x t
h)

in the target domain, δ acts as a scale parameter that regulates
the shape and characteristics of probability distributions, which
is set to 10 [45]. We mitigate intra-domain variations through
the maximization of probabilities associated with each input
instance and its adjacent samples.

Nevertheless, the efficacy of this procedure relies on the
accuracy of neighbor search, which is essential for preserving

the neighborhood invariance of embedding space within the
target domain. It is common to select the K -nearest neighbors
as neighborhood [46], [47], [48], but it is limited by the
quantity of samples per class, and determining an apt K -value
is a costly process for every dataset or class.

We propose an adaptive neighborhood search strategy. As
shown in Fig. 3(a) and (b), the neighbor of x t

i can be defined
as

�i =
{

ei ek > ψ ·max(ei en0), k ̸= i
}

(3)

where n0 is the nearest neighbor of x t
i . ψ is the neighbor

similarity, which is set to 0.875. Our neighborhood selection
framework exhibits stability and robustness against imbalances
in data size, as detailed proof is given in the Appendix.

Utilizing the Jaccard distance [49], we gauge the weight
to which the j th instance in memory can be considered a
neighboring sample of the x t

i , as shown in Fig. 3(c)

Wi j =

∣∣�i ∩� j
∣∣∣∣�i ∪� j
∣∣ (4)

where |�i ∩ � j | denotes the number of common neighbors
between sample i and j , and |�i ∪� j | is the size of the union
of their neighbor sets. Jaccard distance measures the similar-
ity of neighborhood structures between samples. A smaller
distance indicates that samples i and j share highly similar
neighborhoods, implying greater intra-class consistency.

The feature alignment based on neighbor confidence is
explicated as follows:

LFA(x t
i ) = −

1
|�i |

∑
j∈�i

Wi j log Pi j . (5)

The process of minimizing the loss function LFA(x t
i ) imposes

a similarity constraint on the feature representations of reliable
neighbors with high confidence, which serves to decrease
variations within the domain.

C. Feature Mixup
The spectral information of RS image varies with the

season and weather conditions of data acquisition, resulting
in a shift between the source and target domains. Despite
feature alignment based on neighbor confidence can enhance
the discriminability of feature representations, the challenge
of class-shift persists. In OVANet [25], the hard-negative
classifier sampling primarily focuses on inter-class distances
within the source domain, the open-set entropy minimization
misclassifies several target samples from unlabeled classes as
classified into one of the predefined categories. To overcome
this limitation and mitigate distribution shift, we introduce a
cross-domain FM approach inspired by manifold mixup [35],
to smoothly simulate unknown-class samples across domains.

Given the samples x s
i and x t

j with the corresponding feature
representations at layer given by F l

θ (x
s
i ) and F l

θ (x
t
j ), the mixup

feature can be formulated as

Mix
(
x s

i , x t
j

)
= Mix

(
F l
θ

(
x s

i

)
,F l

θ

(
x t

j

))
= λ · F l

θ

(
x s

i

)
+ (1− λ ) · F l

θ

(
x t

j

)
(6)

where λ ∼ Beta(α, α), and α is fixed at 2.0 for the Beta dis-
tribution. Considering the interpolation parameter λ ∈ [0, 1],
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Fig. 2. Structure of our proposed DCmix. (a) Role of each module loss. (b) FM. The mixup features exhibit a low probability of belonging to a known
class, thereby enhancing the identification of unknown classes. (c) Consistency discrimination. The minimization of Ldc rectifies erroneous predictions of
known-class samples as a consequence of high confidence.

Fig. 3. Neighbor search and its confidence. (a) and (b) Adaptive neighbor-
hood. (c) Weight of the sample neighbors, the neighborhood assigns increased
confidence to neighbors that share more similarities.

our network is able to utilize various intermediate conditions
generated by domain mixup, smoothing the classification of
unseen data categories by open-set classifiers. The Mix(x s

i , x t
j )

is assigned to a known category if and only if x s
i and x t

j belong
to the same known class, with the probability stated as

p
{(

ys
i = yt

j

)
∈ Cs ∩ Ct

}
=
S

{(
ys

i = yt
j

)
∈ Cs ∩ Ct

}
S

{
ys

i ∈ Cs, yt
j ∈ Ct

}
=

C1
|Cs∩Ct |

C1
|Cs |
· C1
|Ct |

=
|Cs ∩ Ct |

|Cs | · |Ct |
(7)

where S is the number of atomic events. Due to |Cs ∩ Ct |

is constrained by the minimum of |Cs | and |Ct |, the value of
p{(ys

i = yt
j ) ∈ Cs ∩Ct } represents a relatively small value. For

instance, if |Cs ∩ Ct | = 13, |Cs | = 30, |Ct | = 21, the p{(ys
i =

yt
j ) ∈ Cs ∩ Ct } ≈ 0.021. Therefore, Mix(x s

i , x t
j ) exhibits a low

probability of belonging to a defined known category; the FM

is adept at simulating potential samples from unknown classes
for the open-set classifier.

The loss based on the FM minimizes

LFM
(
x s

i , ys
i , x t

j

)
= L

(
Mix

(
x s

i , x t
j

)
,Mix

(
ys

i , ŷt
j

))
= − log(1− Po

(
ys

i |Mix
(
x s

i , x t
j

))
(8)

where Po(g|z) = π(z)o represents the probability that the
given feature z belongs to the class g as an in-lier, π is
the softmax activation function. Through the minimization of
LFM, the in-lier probability associated with simulated mixup
instances are reduced, improving the classification perfor-
mance for unknown-class samples.

D. Dual-Classifiers Consistency Discrimination
Although the FM can better identify unknown category

samples, the incorporation of unknown samples in mixup
procedures results in overcrowding of the decision boundaries
for the open-set classifier. As the training progresses, the
decision boundary for known classes progressively narrows,
ultimately culminating in a degenerate state where all samples
are erroneously labeled as unknown. In order to slow down the
performance degradation of known-class recognition, we intro-
duce the consistency constraint of the probability prediction
distribution between closed-set and open-set classifiers.

Suppose that a known category sample x t
i assigned the

ground-truth label g is incorrectly identified as unknown. The
closed-set classifier typically demonstrates high confidence
in the maximum-probability known class g, yet its open-set
classifier assigns it a low in-lier probability. In contrast,
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Algorithm 1 Framework of DCmix for RS Images

Input: Source domain Ds
=

{(
xs

i , ys
i

)}ns

i=1, target domain
Dt
=

{(
xt

i

)}nt

i=1, and trade-off parameter β, γ, ϕ.
Output: Well-trained feature extractor G f and classifier Gc,

predicted label ŷt for target domain.
1: Extract source and target samples and initialize the model.

2: Register target memory bank and neighbor matrix.
3: while not converged do
4: Calculate features, logits and probabilities for samples;

5: Update target feature bank;
6: Feature alignment, and calculate the Wi j according to

Equation (4);
7: if Corresponding loss weights exist then
8: Calculate source and target losses LOV A, neighbor

loss LF A, FM loss LF M , and consistency loss Ldc;
9: Calculate total loss according to Equation (10),

update metrics.
10: end if
11: Update the feature extractor G f and classifier Gc.
12: end while
13: Obtain the predicted label ŷt for target domain.

unknown-class samples tend to exhibit lower known-class
confidence. Consequently, we surmise that instances exhibiting
discordant known class confidence and open-set in-lier proba-
bility are likely mislabeled known categories. This alignment
of reduced known class confidence with a low open-set in-
lier probability for unknown-class samples is visualized in
Fig. 2(c). We compare the open-set inlier probability from the
corresponding open-set sub-classifier with a threshold of 0.5 to
determine whether a sample belongs to a known or unknown
class.

The dual-classifiers consistency discrimination based on
known class confidence Pc(g|x t

i ) and open-set in-lier prob-
ability Po(g|x t

i ) can be written as

Ldc
(
x t

i

)
= −

1
Ks

Ks∑
g=1

ω
(
x t

i

)
Pc

(
g|x t

i

)
· Po

(
g|x t

i

)
(9)

where Ks is the number of known classes, ω(x t
i ) = 1 −

max(Pc(g|x t
i ), Po(g|x t

i )) is the weight of the sample x t
i , and

Pc(g|x t
i ) = π(F l

θ (x
s
i ))c represents the confidence that the

given instance x t
i belongs to the known class g. The par-

tial derivative with regard to the open-set in-lier probability
Po(g|x t

i ) assumes a negative value, adhering to the inequality.
The Po(g|x t

i ) undergoes an increase that is directly propor-
tional to the known class confidence Pc(g|x t

i ) through the
application of gradient descent. The minimization of Ldc
rectifies erroneous predictions of known-class samples as a
consequence of high confidence. Conversely, for unknown
samples, both Pc(g|x t

i ) and Po(g|x t
i ) remain consistently low,

minimizing the risk of misidentification as a known class.
Ultimately, we refine the open-set classifiers and their

decision boundaries to effectively distinguish the known and
unknown samples.

E. Overall Objective

We endeavor to optimize a suite of loss functions, specif-
ically designed to address the complexities of RS images
and the challenges associated with diverse source and target
domains. The LFA enforces a similarity constraint on feature
representations of reliable neighbors with high confidence,
thereby minimizing intra-domain variations. By minimiz-
ing LFM, we reduce the in-lier probability of simulated
mixup instances, enhancing classification performance for
unknown-class samples. Furthermore, leveraging high closed-
set confidence, Ldc corrects the wrong classifications of
known-class samples and optimizes the open-set classifier for
distinguishing unknown classes.

Considering the aforementioned components, the overall
objective can be expressed as

Loverall = LOVA + βLFA + γLFM + ϕLdc (10)
LOVA = Lova + Lcls + 0.1Lent (11)

where β, γ, ϕ are hyperparameters that control the weights of
different modules. The LOVA shares the identical loss function
with the OVANet [25], specifically, Lova is the open-set
classification loss, Lcls refers to the cross-entropy loss for
the closed-set classifier, and Lent signifies entropy of all the
classifiers.

IV. DATASETS

A. HSI Datasets

Experiments use four HSI datasets, namely Houston2013,
Houston2018, Pavia Center, and Pavia University, covering
different geographical locations and spectral characteristics.
Based on these datasets, we construct four HSI transfer tasks
to evaluate our proposed DCmix method.

1) Houston: The Houston dataset is acquired over the Uni-
versity of Houston campus and the neighboring urban
area. Due to differences in sensors and acquisition times,
it is divided into Houston2013 [50] and Houston2018
[51]. We focus on the region (209 × 955 pixels) of
these two scenes and investigate the commonalities in
48 spectral bands. As shown in Table I, these two scenes
contain a total of seven categories. In our experiments,
Non-residential buildings is selected as the source pri-
vate class, and Road is selected as the target private
class, with the remaining five categories serving as
common classes. Fig. 4 provides a visualization of
this dataset, presenting pseudo-color images alongside
ground-truth maps.

2) Pavia: The Pavia dataset includes two subsets,
Pavia Center (1096 × 715 pixels) and Pavia University
(610 × 340 pixels). After discarding the last spectral
band from Pavia University, both subsets use 102 spec-
tral bands. As shown in Table II, both scenes share
the same seven categories. In our experiments, Meadow
is chosen as the source private class, and Bare soil is
chosen as the target private class, with the remaining five
categories serving as common classes. Fig. 5 provides
a visualization of this dataset, presenting pseudo-color
images alongside ground-truth maps.
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Fig. 4. Visualization for Houston task. (a) Houston2013 in pseudo-color. (b) Houston2018 in pseudo-color. (c) Houston2013 ground-truth map. (d) Houston2018
ground-truth map.

TABLE I
NUMBER OF SAMPLES FOR HOUSTON DATASETS

TABLE II
NUMBER OF SAMPLES FOR PAVIA DATASETS

Fig. 5. Visualization for Pavia task. (a) Pavia University in pseudo-color.
(b) Pavia Center in pseudo-color. (c) Pavia University ground-truth map.
(d) Pavia Center ground-truth map.

B. RGB Datasets

Experiments involve constructing transfer learning tasks
using three RS image datasets: AID (Aerial Image Dataset, A)
[57], NWPU-RESISC45 (N) [58], and UC Merced (U) [59].

From these datasets, six transfer tasks can be established, with
the specific domain categories for each task shown in Fig. 6.
It is noteworthy that the labels in the two domains may not be
identical. For example, A contains only the “Airport” category,
whereas N distinguishes between “Airplane” and “Airport.”
Additionally, since all categories in the U dataset are included
in the N dataset, the U → N task is essentially an open-set
DA task. Similarly, the N → U task is a partial DA task.

1) AID (Aerial Image Dataset, A) is an RGB dataset
designed for RS image classification, including 30 scene
categories (220∼420 images each), totaling around
10 000 high-resolution (600 × 600 pixels) images.
It covers various geographic and environmental condi-
tions.

2) NWPU-RESISC45 (N) is a large-scale RGB dataset with
45 scene categories and approximately 700 images per
category, totaling 31 500 images (256 × 256 pixels).
It spans diverse scenes worldwide, including urban,
rural, forest, and ocean environments, making it a valu-
able resource in RS image classification research.

3) UC Merced (U) is a smaller dataset with 21 scene
categories, each with 100 images, totaling 2100 images
(256 × 256 pixels). It covers various geographic envi-
ronments in the United States and is often used for
benchmark testing due to its high quality and well-
defined categories.

V. EXPERIMENTAL RESULTS

A. Setup

To assess the performance of the introduced DCmix,
we examine four HSI datasets and three RGB datasets.
We utilize the PyTorch framework to instantiate and execute
DCmix, leveraging the NVIDIA GeForce RTX 3090 for com-
putations. Drawing inspiration from prior studies [23], [25],
[54], [60], we adopt ResNet50, pre-trained on ImageNet [61],
as the backbone network for RGB datasets. For HSI datasets,
we adhere to the VGG16 architecture, similar to [24] and [62].
Patches in HSI datasets are standardized to a dimension of
12 × 12, with labeling based on the central pixel’s category.
The batch sizes for HSIs and RGB images are 64 and 36,
respectively. The SGD optimizer with Nesterov momentum
and an inverse scheduler is consistent with the setting detailed
in [24]. For each hyperparameter, we set β = 0.50, γ = 0.10,
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Fig. 6. Classes of image labels involved in each task and their examples.
Since all the classes in U are included in N, the task of U→ N is actually an
open-set DA task. In the same way, the task of N → U is actually a partial
DA task.

ϕ = 0.16, and the neighbor similarity ratio ψ = 0.875. In
this study, we use the term overall accuracy (OA) to refer to
the proportion of correctly classified samples across all cate-
gories. To more precisely evaluate the model’s classification
performance, we adhere to the evaluation metric H-score by
Fu et al. [28], considering both common class (aC) and target
private class (aCt

), which is defined as

H-score = 2×
aC × aCt

aC + aCt

. (12)

B. Comparison Methods
To establish a comprehensive performance baseline,

we incorporate a diverse set of SOTA DA algorithms for com-
parison, including domain-adversarial neural network (DANN)
[52], joint adaptation networks (JAN) [63], conditional domain
adversarial network (CDAN) [53], universal adaptation net-
work (UAN) [21], domain adaptative neighborhood clustering
via entropy optimization (DANCE) [54], calibrated multi-
ple uncertainties (CMU) [28], OVA network (OVANet) [25],
unified optimal transport framework for universal domain
adaptation (UniOT) [29], universal domain adaptation for
RS image scene classification (MA) [22], transferable vision
transformer (TVT) [55], spectral alignment (SPA) [56], UniDA
based on certainty, confidence, and consistency (C3DA) [23],
and UniDA for cross-scene HSI classification (HyUniDA)
[24]. Closed-set DA is difficult to accurately classify target
private classes, according to its setting. Softmax regression
is used to allocate diverse labels to the target domain, and

the label with the greatest likelihood is assigned to the target
sample. When the probability of all known labels is below
the threshold (0.9), we set it to unknown, i.e., target private.
Additionally, we compare the baseline model (VGG16 for
HSI and ResNet-50 for RGB), which only employs classi-
fication loss without DA techniques. Note that DCmix is a
general framework independent of backbone architectures. The
adoption of VGG16 and ResNet-50 in our experiments is
solely for fair comparison with prior art. The performance
improvements stem from our proposed consistency constraints
and DA mechanisms, rather than the choice of backbones.

Tables III–VII provide the common classes accuracy, target
private accuracy, OA, and H-score in the aforementioned
methods for HSI and RGB target scenes, along with the
classification accuracy for individual classes.

For HSI datasets, the proposed DCmix attains the highest
H-score across all four scenarios, with the Houston2013→
Houston2018 and Pavia Center→University scenarios also
yielding the highest OA. Both DANN and CDAN, as standard
DA methods, demonstrate higher OA than baseline, with the
majority of H-scores also surpassing the baseline, except for
CDAN on the Houston dataset, where its H-score is 0.1%
lower than baseline. However, for target private class identifi-
cation, the accuracy of these two methods is significantly lower
than the other UniDA methods. DCmix enhances performance
by minimizing LFM, which reduces the in-lier probability
of simulated mixup instances. SPAs perform well in the
Houston2013→Houston2018 task but struggle in the reverse
transfer task Houston2018→Houston2013, possibly due to a
lack of generalization. Some methods exhibit overfitting, such
as DANCE, UniOT, and MA, achieving an accuracy rate of
100% for the “water” category in the Houston scenario, which
is significantly higher than the other categories. In the Houston
task, DANCE reaches an accuracy of 94.13% for unknown
categories but only 18.52% for known categories, possibly due
to misclassifying known categories as unknown. By leveraging
Ldc, DCmix effectively corrects misclassifications for known
class samples and optimizes the open-set classifier to distin-
guish unknown categories more accurately. Notably, for Pavia
Center→University, our method achieves the highest accuracy
of 64.69% and H-score of 68.91%, which are at least 2.45%
and 8.14% higher than the other UniDA methods, respectively.

For RGB datasets, our method achieves the highest H-score
except for U→N, where it is lower than C3DA. We use LFM
to enforce similarity constraints on feature representations
of reliable neighbors with high confidence, thus minimizing
intra-domain variation. DCmix stands out in the evaluation
of average OA and H-score, achieving the highest values
of 63.09% and 62.09%, respectively. Among all comparison
methods, the TVT achieved the highest OA of 61.07%, while
the C3DA method, specifically designed for RGB images of
RS, obtained the highest H-score of 58.44%. Compared with
HSIs, RGB images have less band information. The gain
of sample enhancement and mixup based on neighborhood
relationship in DCmix is limited in a low-dimensional feature
space, which may introduce additional noise.

Although the performance of DCmix may be similar to or
slightly lower than that of SOTA methods in some categories,
our method performs well in terms of stability and accuracy in
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TABLE III
CLASSIFICATION ACCURACY METRICS, INCLUDING CLASS-SPECIFIC, COMMON, TARGET PRIVATE, OA, AND H-SCORE (%), FOR VARIOUS SOTA DA

METHODS EVALUATED FROM HOUSTON2013 TO THE TARGET SCENARIO HOUSTON2018 (VGG16)

TABLE IV
CLASSIFICATION ACCURACY METRICS, INCLUDING CLASS-SPECIFIC, COMMON, TARGET PRIVATE, OA, AND H-SCORE (%), FOR VARIOUS SOTA DA

METHODS EVALUATED FROM PAVIA CENTER TO THE TARGET SCENARIO UNIVERSITY (VGG16)

TABLE V
CLASSIFICATION ACCURACY METRICS, INCLUDING CLASS-SPECIFIC, COMMON, TARGET PRIVATE, OA, AND H-SCORE (%), FOR VARIOUS SOTA DA

METHODS EVALUATED FROM HOUSTON2018 TO THE TARGET SCENARIO HOUSTON2013 (VGG16)

TABLE VI
CLASSIFICATION ACCURACY METRICS, INCLUDING CLASS-SPECIFIC, COMMON, TARGET PRIVATE, OA, AND H-SCORE (%), FOR VARIOUS SOTA DA

METHODS EVALUATED FROM PAVIA UNIVERSITY TO THE TARGET SCENARIO CENTER(VGG16)

the overall task. Especially in different cross-domain scenarios,
DCmix does not overfit and maintains strong generalization
ability through effective module synergy.

Figs. 7 and 8 show the classification maps of each compar-
ison algorithm for target scenarios Houston2018 and Pavia

University, respectively. In the depicted maps, the marked
pixels represent the corresponding model-predicted categories,
while the unmarked pixels indicate background or ignored
points. From these maps, it is observable that our pro-
posed DCmix method demonstrates lower noise and improved
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TABLE VII
OA AND H-SCORE (%) ON OUR COLLECTED DATASET FOR UNIDA SCENARIOS (RESNET-50)

accuracy in identifying certain categories. As shown in Fig. 7,
our method more accurately identifies trees and differen-
tiates between healthy grass and stressed grass. Similarly,
as depicted in Fig. 8, our method excels in identifying bare
soil, which is a target private class. DCmix demonstrates
exceptional noise reduction and accuracy improvement, sur-
passing other comparative DA methods. The proposed method
effectively captures categories that appear only in the target
domain, showcasing its robust classification capabilities. This
ensures alignment between the maps produced from predic-
tions and the actual ground truth maps. Overall, DCmix proves
to be a robust and efficient method for HSI and RGB image
classification tasks.

We performed a detailed analysis of the computational com-
plexity of our method compared to several SOTA approaches,
as summarized in Table VIII. The table reports training
speed in frames per second (fps) and the number of param-
eters (in millions, M). The fps metric provides a direct and
interpretable measure of how many images a model can
process per second during inference. Our method achieves
a training speed of 27.78 fps, which is comparable to other
competitive approaches such as OVANet, MA, and HyU-
niDA. While our method does not outpace the fastest method
(C3DA, 29.11 fps), it maintains a competitive performance
among existing approaches. Regarding parameters, our method
requires 23.57 M, which is either on par with or lower
than several other methods, underscoring its computational
efficiency without introducing significant overhead.

C. Ablation Studies
For validation and assessment of the DCmix’s efficacy,

we conducted a series of ablation experiments aimed at
gaining in-depth insights into the contributions of individual
components to overall performance.

We conducted experiments using various combinations of
loss modules. For HSI datasets, as shown in Table IX, when
no loss modules are used, the baseline model achieves an accu-
racy of 54.26%∼55.58% and an H-score of 28.13%∼30.35%.
Adding only LFA significantly increases the accuracy of known
classes to 67.23% and 77.37% (OA gains of 1.48% and
3.63%), while H-score increases marginally to 30.81% and

TABLE VIII
COMPARISON OF COMPUTATIONAL COMPLEXITY BETWEEN THE METH-

ODS

29.46%, indicating neighborhood alignment primarily bene-
fits known-class discrimination. Combining LFM with LFA
significantly enhances the recognition of unknown classes,
as evidenced by the H-score increasing from 30.35% to
61.73% on Pavia and from 28.13% to 52.81% on Houston.
The introduction of the LFM reduces the in-lier probability
associated with simulated mixup instances, thereby improving
the classification performance for unknown-class samples.
Enabling only LFM dramatically boosts unknown class to
74.69% (Pavia) and 55.26% (Houston) but drops known class
performance and OA, showing that LFM is prone to introduce
noise and blur the decision boundary in the absence of neigh-
borhood information. Building on this, adding the Ldc further
enhances DCmix’s performance by rectifying overconfident
predictions for known-class samples. OA and H-score increase
by 6.90%∼8.13% and 7.18%∼13.08%, respectively. Using
a combination of LFA and Ldc or LFM and Ldc results in
limited performance improvements. The best performance for
all tasks is achieved when all three loss terms are activated,
indicating that they are complementary and beneficial for
UniDA scenarios.

Table IX demonstrates that our proposed modules deliver
substantial performance gains with minimal computational
overhead. The baseline model requires 23.65 s/epoch and
2.37 GB of memory, whereas the full DCmix configuration
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Fig. 7. Classification maps from source domain for the target scenario Houston2018 produced by multiple methods, encompassing (a) VGG16, (b) DANN,
(c) CDAN, (d) UAN, (e) DANCE, (f) UniOT, (g) MA, (h)TVT, (i) SPA, (j) HyUniDA, and (k) DCmix(Ours).

Fig. 8. Classification maps from source domain for the target scenario Pavia University produced by multiple methods, encompassing (a) VGG16, (b) DANN,
(c) CDAN, (d) UAN, (e) DANCE, (f) UniOT, (g) MA, (h)TVT, (i) SPA, (j) HyUniDA, and (k) DCmix(Ours).

(LFA + LFM + Ldc) takes 24.05 s and 2.51 GB. All module
additions incur less than 1.7% extra training time and under

6% additional memory, while the H-score increases dramati-
cally from 30.35% to 68.91%.
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TABLE IX
OA, H-SCORE (%), TRAINING TIME OF ONE EPOCH (s) AND MEMORY CONSUMPTION (GB) FOR DIFFERENT LOSS

COMPONENTS ON THE HSI DATASETS (VGG16)

This also applies to RGB datasets. As indicated in Table X,
the model’s overall performance decreases when any single
module is removed. After removing the LFA, there is a
significant drop in the OA, indicating that this module plays
a key role in the recognition of known classes. Notably,
when LFM is excluded in the A→U scenario, the H-score
drops from 56.07% to 26.73%. The introduction of the LFM
module is crucial for the recognition of unknown classes.
This comprehensive analysis of these loss modules highlights
their importance in enhancing model performance, showing
that the combined use of the three loss modules is crucial for
improving model performance.

D. Sensitivity to Hyperparameters

We carried out a sensitivity analysis on four crucial hyper-
parameters, i.e., β, γ, ϕ, and ψ . The impact of varying β

and γ values on the OA and H-score metrics for the Pavia
and Houston datasets is presented in Figs. 9 and 10 provides
an analysis of how variations in the parameter ϕ affect the
model’s performance, specifically when evaluated on the RGB
dataset. Fig. 11 illustrates the experiments on varying neighbor
similarity ratio ψ . We evaluated the impact of different β
values within the range of 0.4–0.6 on OA and H-score.
As depicted in Fig. 9(a), when β is less than 0.5, both accuracy
and H-score increase with the increase of β. However, when
β exceeds 0.5, both metrics sharply decrease in the Pavia
and Houston datasets. Similarly, in Fig. 9(b), a γ value of
0.1 stands out as a peak, significantly outperforming other
settings, indicating that LFM functions best at this weight.
For ϕ, we conducted a sensitivity analysis on six tasks
within the RGB dataset. As illustrated in Fig. 10(a) and (b),
we examined the changes in OA and H-score as ϕ varied from
0.12 to 0.20. For most tasks, ϕ equals 0.16 is the optimal
value for both metrics. However, for certain tasks, such as
the N→U scenario, both accuracy and H-score are lower at
ϕ = 0.16 compared to other settings. Regarding the parameter
ψ , we varied it from 0.800 to 0.990. When ψ equals 0.875,
both the Pavia dataset and the A→U task achieve the highest
H-score. For accuracy, the maximum value for the Pavia
dataset also occurs at ψ = 0.875, but for the A→U task, the
accuracy at this value is lower than most of the other settings.
Based on our findings, we set these hyperparameters to the
following optimal values: β = 0.50, γ = 0.10, ϕ = 0.16, and
the neighbor similarity ratio ψ = 0.875.

Fig. 9. Sensitivity of model performance to hyperparameters on the HSI
datasets (VGG16). (a) Effect of β on OA and H-score. (b) Effect of γ on OA
and H-score.

Fig. 10. Sensitivity of model performance to hyperparameter ϕ on RGB
datasets (ResNet-50). (a) OA varies with different ϕ. (b) H-score varies with
different ϕ.

Fig. 11. Sensitivity to neighbor similarity ratio ψ on RGB datasets
(A → U) and HSI datasets (Pavia Center → University).

E. Robustness in Realistic UniDA

1) t-SNE Visualizations: The t-distributed stochastic neigh-
bor embedding (t-SNE) [64] provides a 2-D representation of
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TABLE X
OA AND H-SCORE (%) FOR DIFFERENT LOSS COMPONENTS ON THE RGB DATASETS (RESNET-50)

Fig. 12. t-SNE visualization of features for six transfer tasks (ResNet-50). Yellow plots are “unknown” samples, and others are “known” samples. (a) A→N.
(b) A→U. (c) N→A. (d) N→U. (e) U→A. (f) U→N.

the high-dimensional feature space, showcasing the separation
and clustering of known and unknown classes. To demon-
strate the feature transferability of our DCmix, we illustrate
the visual representations of network features obtained from
the final convolutional layer for six diverse transfer learning
tasks in Fig. 12. Moreover, Fig. 13 shows the t-SNE feature
visualization of the extracted features for each incremental
module in the A→U task. Notably, the clear separation
between known and unknown samples demonstrates the net-
work’s capacity to distinguish between these classes effectively
in Fig. 12(b)–(d). The clustering pattern observed among
known samples also indicates that our method has effectively
minimized intra-domain variations and substantially enhanced
the generalization ability of the features. Features remain
well-organized and distinct even when transferring knowl-
edge across significantly different domains. This validates our
approach for smoother decision boundaries and more compact
feature representations, contributing to improved classification
performance in RS image analysis.

2) Different Class Splits: In a real cross-domain HSI clas-
sification scenario, the sample class of the target domain
is entirely unknown, thus resulting in a multitude of class
splits. To assess the robustness of our proposed DCmix in
realistic UniDA, we carry out experiments with the task A→N,

TABLE XI
ROBUSTNESS IN REALISTIC UNIDA WITH DIVERSE RATIOS OF COMMON

CLASSES FOR THE TASK A → N. DIFFERENT CLASS SPLITS C/Cs/Ct
REVEAL DIVERSE RATIOS OF COMMON CLASSES

considering diverse proportions of common classes, as shown
in Table XI. It is observed that DCmix achieves high OA
and H-score across different class splits, demonstrating robust
generalization capabilities toward shared classes. The OA
ranges from 67.30% to 76.05%, while the H-score varies from
65.64% to 70.50%. The consistent results indicate that DCmix
effectively balances the performance between common and
target private classes under varying proportions. Furthermore,
the method shows effectiveness in feature learning for the
target domain, enabling accurate distinction of target-specific
samples even when they are not present in the source domain,
with accuracies ranging from 60.57% to 70.47%. In summary,
DCmix is not sensitive to the variation of class splits.
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Fig. 13. t-SNE feature alignment for the A-U task under different setups. (a) Base setup, (b) with LFA, (c) with LFA+LFM, and (d) with LFA+LFM+Ldc.

VI. CONCLUSION

In this study, we confront the significant issue of UniDA
in RS image classification by introducing DCmix, a dual-
classifier network. The architecture integrates both closed-set
and open-set classifiers, marking the first application of such
a dual-classifier approach to the UniDA task in the RS
community. Our method improves the identification accuracy
of unknown sample classes by leveraging the complementary
strengths of these classifiers. We enhance the generalization
capability of features in the target domain by using the neigh-
borhood relations of samples. The feature alignment module
includes reliable neighbor search, similarity maximization, and
confidence measurement, thereby fostering more robust and
adaptable feature representations. Additionally, we implement
a cross-domain FM scheme guided by the consistency dis-
crimination of the dual classifiers. The FM scheme not only
produces smoother decision boundaries but also simplifies
hidden layer representations by explicitly simulating interme-
diate states of unknown classes. Comprehensive experiments
performed on multiple hyperspectral and RGB datasets have
demonstrated that our approach attains SOTA performance in
the UniDA scenario for RS image classification, validating its
effectiveness and significant contributions to the field.

APPENDIX
PROOF OF MITIGATION FOR SAMPLE IMBALANCE

The ki and ni correspond to the neighbor count and total
samples of the i th class, respectively, while k j and n j represent
the same for the j th class. We assume a disparity in the data,
where the i th class has a higher sample count (ni > n j )
compared to the j th class. The relative neighbor ratio between
the i th and the j th classes is denoted as

Ri j =
ki

ni
÷

k j

n j
=

ki

k j
·

n j

ni
. (13)

If Ri j = 1, it implies a balanced distribution of neighbors
across the two classes. The ki and k j are both assigned the
same value in K -nearest neighbors; the relative neighbor ratio
can be condensed to R†

i j = n j/ni . The K -nearest neighbors
approach has a preference for sampling the j th class data
more often.

During the neighbor search, the number of neighbor samples
chosen for each category is proportional to its sample size,
i.e., ki ∝ ni , k j ∝ n j . Owing to ni > n j , we may logically
postulate that ki > k j , resulting in the inequality

Ri j =
ki

k j
·

n j

ni
>

k
k
·

n j

ni
> 0. (14)

The quantity of neighbors chosen for the i th class is scaled up
by the factor ki/k j > 1. The Ri j approaches 1 more closely
than R†

i j , leading to a more balanced neighbor search and
subsequently reducing the data imbalance.
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