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Abstract— Various remote sensing applications have widely
used domain adaptation (DA) methods. Since it does not need
to add human interpretation in the target domain, it can be
used in cross-region, multitemporal, and multisensor applica-
tion scenarios. In order to further optimize the design of
the loss function and better address the challenges of DA in
remote sensing, in this letter, we propose a new universal DA
method named C3DA for scene recognition of remote sensing
images. It has a comprehensive C3 criterion for recognizing the
“unknown” classes by innovatively fusing confidence, consistency,
and certainty of samples to make our network training more
efficient. We evaluate the performance of our proposed method
based on six transfer tasks on three remote sensing datasets.
The evaluation results show that our proposed method achieves
an average H-score of 58.44%, significantly higher than other
SOTA universal DA methods with an average improvement of
2.32%∼29.43%. Compared to the baseline ResNet-50, it achieves
up to 19.92% improvement, demonstrating that the proposed
method outperforms the universal DA scenario. In the future,
we also plan to expand the application of this method to more
scenarios.

Index Terms— Deep learning, remote sensing, scene classifica-
tion, universal domain adaptation (DA).
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I. INTRODUCTION

REMOTE sensing can obtain accurate and objective geo-
graphic information quickly and timely. As a remote

sensing image, it can accurately and vividly depict the
current distribution of surface features, the relationships
between them, and the mutual interactions and changes among
them [1]. The introduction of remote sensing technology has
provided convenience and a foundation for in-depth research
on regional geographic comprehensive dynamic analysis and
has improved the practical value and benefit of the results [2],
[3]. In the classification of remote sensing images, phenomena
such as variations in spectral signatures of the same object and
similarities in spectral signatures of different objects occur
frequently [4]. Due to differences in geographical location,
environment, and seasonal changes, the form of the same
ground object on the image may not be the same. Conversely,
what appears to be the same in the image may not necessarily
represent the same object or phenomenon. These aforemen-
tioned issues can introduce complexity to the interpretation of
remote sensing images, necessitating the utilization of deep
learning methods to achieve more accurate classification [5].

In this scenario, domain adaptation (DA) provides great
potential to improve the generalization ability of deep learning
models and is becoming a widely-used strategy for transfer
learning [6]. According to the inclusion relationship of sample
labels between the source and target domains, DA can be
archived into four categories [7]. Closed-set DA refers to
the situation where the classes contained in the source and
target domains are identical [Fig. 1(a)]. Partial DA refers to a
scenario where the classes present in the target domain are a
subset of the classes found in the source domain [8], indicating
the presence of outlier classes in the source domain [Fig. 1(b)].
In contrast, open-set DA describes a situation where the classes
present in the source domain form a subset of the classes in the
target domain, resulting in the presence of “unknown” classes
in the target domain [Fig. 1(c)]. Furthermore, universal DA
generalizes the three aforementioned DA settings. It defines a
scenario where the source and target domains typically share
some labels but each also has a unique set of labels not found
in the other, without being constrained by prior knowledge
[Fig. 1(d)] [9], [10].

In deep learning and computer vision, the design of the
loss function holds significant importance [11]. The training
process of a model involves optimizing the loss function to
adjust the model parameters. In the case of universal DA
in remote sensing imagery, the principle remains consistent.
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Fig. 1. Some examples of four typical cases of DA. (a) Standard domain
adaptation (Ct ≡ Cs ). (b) Partial domain adaptation (Ct ⊆ Cs ). (c) Open-set
domain adaptation (Ct ⊇ Cs ). (d) Universal domain adaptation.

Enhanced design of loss functions contributes significantly to
improving the classification performance of remote sensing
images. Particularly within the realm of universal DA, given
the distinctive characteristics of remote sensing images, the
identification of unknown classes presents a significant chal-
lenge. Currently, further exploration into the research of loss
functions in remote sensing image classification is warranted.

In this letter, we propose a novel universal DA method
named C3DA for the classification of remote sensing images.
The main contributions of it can be summarized in the follow-
ing points.

1) We propose a comprehensive C3 criterion to better rec-
ognize the “unknown” classes in remote sensing images.

2) Our proposed C3DA method with a two-stage (TS)
attention mechanism can better minimize the negative
effect from outlier classes in the source domain.

3) The evaluation results of six tasks for three datasets
show that our C3DA method attains a 19.92% gain com-
pared to baseline and yields 2.32%∼29.43% improve-
ments compared to other universal DA methods.

II. METHODOLOGY

A. Preliminary
In the universal DA scenario, we define the dataset of the

source domain as (Ds = {(xs
i , ys

i )}
ns
i=1), where the images are

labeled. Correspondingly, the dataset of the target domain is
(Dt = {(xt

i )}
nt
i=1), the images in it are not yet labeled. In the

above definition, ns and nt are the number of images in the two
datasets, respectively. Ds and Dt are sampled from different
distributions. We assume that Cs and Ct represent the label sets
of the source and target domains. Let Cc = Cs ∩ Ct denote
the set of labels common to the above two domains. C s =

Cs\Cc represents the set of labels that are private in the source
domain, and C t = Ct\Cc correspondingly represents the set
of labels that are private in the target domain. The overall goal
of adaptation is to identify target samples with either one of
the “known” common labels (Cc) or the “unknown” label (C t )
based on labeled Ds and unlabeled Dt .

B. Network Architecture
Fig. 2 depicts the framework of C3DA, it consists of the

following parts, including feature extractor F , multiple classi-
fiers Gi |

m
i=1 and domain discriminator D. In the meantime, our

proposed C3DA has a comprehensive C3 criterion for recog-
nizing “unknown” classes fusing confidence, consistency, and

Fig. 2. Overall framework for our proposed C3DA, including feature
extractor F , multiple classifiers Gi |

m
i=1 and domain discriminator D.

certainty of samples to make network training more efficient,
as well as to achieve higher classification performance for
universal DA scenario.

We adopt adversarial learning to align feature representa-
tions by incorporating classification from the source domain
with gradient reversal layer (GRL) [12] to make D indistin-
guishable whether the sample that comes from either of the
two domains, which is the well-established domain adversarial
neural network (DANN) and their loss can be calculated as

CDANN
(
θ f , θy, θd

)
= Ccls

(
θ f , θy

)
− λCadv

(
θ f , θd

)
=

1
ns

∑
xi ∈Ds

Lcla(G(F(xi )), yi )

−
λ

n

∑
xi ∈Ds∪Dt

Ldis(D(F(xi )), di ) (1)

where n = ns +nt , and λ is a hyper-parameter used to balance
the classification loss (Lcla) and domain loss (Ldis).

1) TS Attention Mechanism: In universal DA, classes that
exist only in the source domain are called outlier classes. Their
presence would have serious negative transfer effects and make
the model perform worse [9]. To better solve this problem,
we introduce a TS attention mechanism to improve the existing
DANN.

This mechanism consists of two weights, including
entropy-aware and target-class-aware [13]. In (1), it is implau-
sible that each sample from both domains performs identically
in Ld . These samples with uncertain predictions are difficult
to transfer, and they may cause deterioration in the adversarial
learning process. Therefore, we use the entropy criterion
to quantitatively analyze the uncertainty in the prediction,
as follows: H(ŷ) = −

∑C
c=1 ŷclog(ŷc), where C is the number

of classes and ŷc is the predicted probability that a sample
belongs to class c. Therefore, with an entropy-aware weight
wm(xi ) = 1 + e−H(G(F(xi ))), we can re-weight the D by each
training sample. It is worth noting that wm is the sample-level
weight.
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On the other hand, we also utilize a simple re-weighting
mechanism to decrease the contribution of the samples belong-
ing to the outlier classes. We take the average of the
predictions ŷ of all samples in the target domain, which
can effectively minimize the impact of the outlier classes.
To that end, the weight vector could be calculated as wv =

(1/nt )
∑nt

i=1 ŷi , where wv is a class-level weight vector with
|Cs |-dimension. The improved adversarial learning objective is
shown in (2), and the classification objective is shown in (3)

Cadv
(
θ f , θd

)
=

1
ns

∑
xi ∈Ds

wyi
v wm(xi )Ld(D(F(xi )), 1)

+
1
nt

∑
xi ∈Dt

wm(xi )Ld(D(F(xi )), 0) (2)

Ccls
(
θ f , θy

)
=

1
ns

∑
xi ∈Ds

wyi
v L y(G(F(xi )), yi ) (3)

where θ f , θy , and θd are the parameters of networks.
However, in a universal DA scenario, another challenge is

that there may exist “unknown” classes. Here we introduce
a comprehensive C3 criterion to better recognize the open
classes.

2) Comprehensive “C3” Criterion:
a) Certainty: In general, entropy is used to measure the

certainty of the predicted class distribution [5]. We use the
entropy criterion to quantitatively analyze the uncertainty in
the prediction as H(ŷt ) = −

∑C
c=1 ŷt

clog(ŷt
c), which is the

same as Section II-B1. In general, the sample in C t usually
has higher entropy and lower certainty, while the sample in C
usually has lower entropy and higher certainty.

However, recognizing “unknown” classes only by certainty
will fail to discriminate uncertain and extremely sharp pre-
dictions, especially when the number of classes is large [14].
Therefore, we introduce two other criteria, confidence, and
consistency, to decide the “unknown” classes jointly.

b) Confidence: Confidence is qualified as the highest
value among predicted probabilities, which is higher for a
more certain sample in the common class (C). Some univer-
sal DA methods adopt confidence to decide the “unknown”
samples [7]. However, it may fail to recognize actual
“unknown” classes only depending on the confidence criterion.
Although the confidence of different class distributions is the
same, the degrees of certainty vary. This also suggests that
high-confidence yet low-certainty samples will diminish the
model’s ability to effectively recognize “unknown” classes
[15]. Therefore, we jointly fuse certainty and the following
consistency to recognize the “unknown” classes.

c) Consistency: The certainty and confidence jointly
address smooth and nonsmooth class distributions to recognize
open class samples better. However, confidence sometimes
will suffer from incorrect predictions. For example, if the
classifier predicts an “unknown” sample as a class in C with
high confidence, the confidence will mistakenly select this
sample as a shared class sample, which is wrong. To this end,
we add another criterion, consistency, that is built on multiple
classifiers (Gi |

m
i=1), which indicates the agreement of different

classifiers. Consistency is more robust for error predictions
because the probability that all classifiers are wrongly and
coincidentally into the same class is low, which means all mul-
tiple classifiers make the same mistake. Therefore, consistency
is compensative for confidence and certainty for prediction
errors.

In order to jointly make full use of the respective advantages
of the above three criteria, we propose a new “C3” criterion
that fuses them to better recognize “unknown” classes in
a universal DA scenario. We calculate the certainty wcer,
confidence wconf and consistency wcons as follows:

wcer =

|C |∑
j=1

−ŷt
j log

(
ŷt

j

)
(4)

wconf = max(ŷt ) (5)

wcons =
1

|C |

∥∥∥∥∥ŷt
−

1
m

m∑
i=1

ŷt
i

∥∥∥∥∥ (6)

where ŷt
j denotes predicted probability of j th class in common

classes (C) and m is the number of multiple classifiers.
We calculate the “C3” criterion wt by fusing three criteria

wt =
1
3
[(1 − wcer) + wconf + (1 − wcons)] (7)

in which higher wt (xt ) denotes that xt is more likely in com-
mon classes (C). In addition, wcer and wcons are normalized
by min-max normalization.

3) Overall Objective: After integrating the above three cri-
teria, our proposed C3DA contains a TS-weight-aware DANN
and an attentive entropy regularization. In summary, the final
learning objective can be formulated as follows:

CC3DA

(
θ f , θy, θd

)
= Ccls

(
θ f , θy

)
− λCadv

(
θ f , θd

)
+ αCent

(
θ f , θy, θd

)
=

1
ns

∑
xi ∈Ds

wyi
v L y(G(F(xi )), yi )

−
λ

ns

∑
xi ∈Ds

wyi
v wm(xi )Ld(D(F(xi )), 1)

−
λ

nt

∑
xi ∈Dt

wm(xi )Ld(D(F(xi )), 0)

+
α

n

∑
xi ∈Ds∪Dt

C∑
c=1

wc
m(xi ) · ŷi,c · log

(
ŷi,c

)
(8)

in which Ccls, Cadv and Cent denote the learning objective of the
classification for samples from the source domain, the domain
discriminator and the attentive entropy objective. λ and α are
the hyper-parameters that trade off the domain discriminator
and attentive entropy objective with the classification objective
in the unified optimization, respectively. The optimization of
min-max issue in (8) is aiming to find the network parameters
θ f , θy , and θd that consistently satisfy as following:(

θ̂ f , θ̂ y
)

= arg min
θ f ,θy

CC3DA

(
θ f , θy

)
(
θ̂d

)
= arg max

θd
CC3DA(θd). (9)

In the inference stage, we first calculate wt (xt ) for a given
target sample (xt ) and then predict the class with the threshold
w0 as follows:

y(xt ) =

{
unknown, wt (xt ) ≤ w0

argmax(ŷt ), wt (xt ) > w0.
(10)
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TABLE I
LABELS OF THE SOURCE AND TARGET DOMAINS THAT ARE PRIVATE TO EACH OF THE SIX TRANSFER TASKS AND THE TYPE OF EACH TASK

TABLE II
ACCURACY (ACC) AND H -SCORE (H-S) (%) ON OUR COLLECTED DATASET FOR UNIVERSAL DA SCENARIOS (RESNET-50)

Fig. 3. Ablation experiments based on the three criteria included in C3, as well as sensitivity experiments for α, λ , and w0. Since N → U belongs to
partial DA, the accuracy is used as the metric. (a) Ablation experiments based on C3. (b) Sensitivity experiments for α. (c) Sensitivity experiments for λ .
(d) Sensitivity experiments for w0.

III. DATASETS

To verify the effectiveness and reliability of the proposed
method while maintaining the generality of the existing meth-
ods, in this letter, we use the following three remote sensing
image datasets to build transfer learning tasks: AID (A) [24],
NWPU-RESISC45 (N) [25], and UC Merced (U) [26]. Based
on these three datasets, six transfer tasks can be established.
The two domain-specific classes in each task are shown in
Table I. It’s worth noting that the labels in the two domains
may not have exactly the same name, for example, the Farm-
land in A includes both Circular farmland and Rectangular
farmland in N. In addition, since all the classes in U are
included in N, the task of U → N is actually an open-set
DA task. Meanwhile, the task of N → U is actually a partial
DA task. We still retain these two tasks to prove that C3DA can

not only improve the performance of universal DA, but also
has good performance in partial and open-set DA, reflecting
generality.

IV. EXPERIMENTS

A. Setup
In terms of experimental configuration, for each hyper-

parameter, we set α = 0.1, λ = 1.0 and w0 = 0.45. The
above values are also the optimal solutions obtained through
sensitivity experiments. For each transfer task, we used accu-
racy to evaluate the performance of the methods and averaged
each method over the six tasks. In order to better characterize
the classification performance of the model, we adopt H -score
to jointly evaluate the accuracy on common classes (aC ) and
the accuracy on target private classes (aC t

), which can be
computed as: Hscore = 2 × (aC × aC t

)/(aC + aC t
).
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B. Results of C3DA Criterion
In this section, our proposed method is compared with

the performance of the backbone [16], four standard DA
methods, and six universal DA methods on the above tasks.
The baseline backbone model exclusively utilizes ResNet-50.
Moreover, it is trained solely on the source domain without
any involvement in DA, thus constituting a straightforward
CNN model.

As can be seen from the results shown in Table II, our
proposed C3DA method outperforms the comparison methods
in at least one of the accuracy and H -score metrics on most
tasks in the task. In general, it achieves an average accuracy
of 58.81%, which is the highest among the various methods.
Likewise, it has the highest average H -score of 58.44%.
It achieves 1.85%∼15.46% and 2.32%∼29.43% improvement
in these two metrics, which shows superior performance on
most of the tasks.

Also, our proposed method attains 4.74% and 19.92% gains
for accuracy and H -score compared to the straightforward
CNN model. In addition, for the partial DA scenario (N → U)
and the open-set DA scenario (U → N), it also achieves the
best performance. This fully reflects the generality of C3DA
proposed in this letter, it has excellent performance in various
DA scenarios.

C. Ablation Study and Sensitivity Analysis
In order to fully analyze the impact of C3 criterion and

hyperparameters on classification results, we conducted abla-
tion experiments and sensitivity analyses. Fig. 3(a) presents
the ablation experiment results for the C3 criterion. In terms
of the average performance on the six transfer tasks, applying
all three criteria simultaneously outperforms using one or
two criteria. Meanwhile, Fig. 3(b)–(d) present the results of
sensitivity tests for three parameters: α, λ , and w0. From the
average performance of the six transfer tasks, the best overall
performance can be obtained when α = 0.1, λ = 1.0, and
w0 = 0.45.

V. CONCLUSION

In this letter, we propose a new universal DA method called
C3DA for scene classification in remote sensing imagery,
which tackles the problem that we do not have any prior
knowledge of the labels in the source and target domains.
Our proposed C3DA has an ensemble criterion for “unknown”
classes fusing confidence, consistency, and certainty of sam-
ples to make our network training more efficient and achieve
higher performance under a universal DA scenario.

Results show that our proposed method can better solve
problems in practice. It has higher versatility and can save
more on labor costs for labeling. In the long run, this will
help us to better analyze remote sensing images and, thus,
better develop and utilize land resources.
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