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A B S T R A C T

Providing an accurate evaluation of palm tree plantation in a large region can bring meaningful impacts in both
economic and ecological aspects. However, the enormous spatial scale and the variety of geological features
across regions has made it a grand challenge with limited solutions based on manual human monitoring efforts.
Although deep learning based algorithms have demonstrated potential in forming an automated approach in
recent years, the labelling efforts needed for covering different features in different regions largely constrain its
effectiveness in large-scale problems. In this paper, we propose a novel domain adaptive oil palm tree detection
method, i.e., a Multi-level Attention Domain Adaptation Network (MADAN) to reap cross-regional oil palm tree
counting and detection. MADAN consists of 4 procedures: First, we adopted a batch-instance normalization
network (BIN) based feature extractor for improving the generalization ability of the model, integrating batch
normalization and instance normalization. Second, we embedded a multi-level attention mechanism (MLA) into
our architecture for enhancing the transferability, including a feature level attention and an entropy level at-
tention. Then we designed a minimum entropy regularization (MER) to increase the confidence of the classifier
predictions through assigning the entropy level attention value to the entropy penalty. Finally, we employed a
sliding window-based prediction and an IOU based post-processing approach to attain the final detection results.
We conducted comprehensive ablation experiments using three different satellite images of large-scale oil palm
plantation area with six transfer tasks. MADAN improves the detection accuracy by 14.98% in terms of average
F1-score compared with the Baseline method (without DA), and performs 3.55–14.49% better than existing
domain adaptation methods. Experimental results demonstrate the great potential of our MADAN for large-scale
and cross-regional oil palm tree counting and detection, guaranteeing a high detection accuracy as well as saving
the manual annotation efforts.

1. Introduction

Oil palm, an economic perennial crop mostly cultivated across the
Southeast Asia, is an important source of edible oils and fats (Rhys
et al., 2018). It is also used for producing oleo chemicals, which are the
main ingredients of personal care products, cosmetics and cleaning
products. The demand for palm oil is increasing and the production is
estimated to reach 72 million tons by 2019 with Malaysia and Indonesia
as leading producers, accounting for more than 80% of the global
production and dominating the international trade (Koh, & Wilcove,
2007; Cheng et al., 2016; Senawi et al., 2019; Truckell et al., 2019).
Recently, oil palm has attracted lots of attention from governments and

researchers, because it plays an essential role in maintaining carbon
balance and possessing high economic value. In addition, the expansion
of oil palm plantation area is condemned by the environmental pro-
tectors due to threatening the survival of native species, destroying the
tropical rain forest and reducing the biodiversity (Busch et al., 2015;
Cheng et al., 2017; Cheng et al., 2018; Carlson et al., 2018; Quezada
et al., 2019). As a result, counting and detecting oil palm trees from
high-resolution remotely sensed images is a significant work for better
management, efficient fertilization and irrigation of oil palm plantation.
Owing to the development of machine learning and deep learning,
many tree crown detection methods have been proposed with satisfying
performance. However, most of them focus on detecting tree crowns in
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a single study region using single-source remote sensing imagery
(Daliakopoulos et al., 2009; Dalponte et al., 2014; Li et al., 2017; Feng
and Li, 2019; Li et al., 2019a; Wang et al., 2019b).

Large-scale and cross-regional oil palm tree investigation is a pivotal
research issue. Nowadays, the affluent remote sensing images and rapid
development of deep learning algorithms bring new opportunity to
large-scale and cross-regional oil palm detection. However, large-scale
tree counting and detection may be confronted with remote sensing
images with diverse acquisition conditions, like different sensors, sea-
sons and environments, resulting in different distribution and domain
shifts among images. For example, as is shown in Fig. 1, Image A and
Image B are two different satellite images. Here we assume Image A as
source domain that has enough labels while Image B as target domain
that has no label for training. We can easily observe the obvious dis-
crepancy between two images in terms of the histogram of each class,
resulting from the difference in sensors, acquisition dates and locations.
That is, even if we have an outstanding oil palm detection accuracy in a
particular scenario, like Image A, when it is directly applied to a new
data set without any labels, like Image B, the performance of the de-
tector may drop dramatically.

Fortunately, domain adaptation (DA) methods can help adapting
the model to new data domains without leveraging a large quantity of
costly labels, which has attracted lots of attention over the past decades.
According to the availability of labelled samples from the target do-
main, DA can be classified into unsupervised DA (UDA), semi-su-
pervised DA (SSDA) and supervised DA (Wang & Deng, 2018). UDA
directly aims at improving the generalization capability of the model
between the source domain and the target domain, without using any
labels from the target domain (Ghifary et al., 2014; Ganin et al., 2016).
SSDA allows the model to learn the information from the target domain,
based on slight labelled data in the target domain and sufficient labeled
data in the source domain (Kumar et al., 2010; Donahue et al., 2013).
Supervised DA uses a small number of labelled data in the target do-
main that are usually not sufficient for tasks (Chopra et al., 2013; Tzeng
et al., 2015). In this paper, we concentrate on UDA method, a promising

type of method in transfer learning, which only requires labels in the
source domain and completely label-free in the target domain.

As traditional deep learning methods focus on grasping the texture
patterns in different images (LeCun et al., 2015), the performance of
trained network in one set of satellite images would degrade sig-
nificantly when moving to images that are taken in a different region or
from a different source. However, thus far, the use of domain adapta-
tion techniques for cross-regional remote sensing image processing is
still at a considerably earlier stage with the following limitations (Tuia
et al., 2016). First, most of these studies focus on land cover and land
use classification, hyperspectral images classification, and scene clas-
sification issues (Bruzzone, & Persello, 2009; Matasci et al., 2012).
Second, these studies usually focus only on decreasing the distribution
discrepancy between the source domain dataset and the target domain
dataset (or a small-scale in a local area) instead of a large-scale target
region (Zhu et al., 2019; Ma et al., 2019). Moreover, they may not take
full advantages of the existing annotations and exploit the transfer-
ability of different samples in the source domain, resulting in a pro-
minent gap of accuracy between the source and the target domain.

In this paper, we propose a novel UDA based oil palm tree counting
and detection algorithm, i.e., a Multi-Attention Domain Adaptation
Network (MADAN), to improve the oil palm tree detection performance
across different remotely sensed images acquired from different sensors,
regions and dates, without using labeled samples in the target region.
Our MADAN is proposed for enhancing both the generalization capacity
and the transferability of our model. Our codes and datasets are
available on https://github.com/rs-dl/MADAN. The major contribu-
tions of our work are as follows:

(1) We propose an adaptive object detector named MADAN for oil palm
tree counting and detection across different satellite images, which
is the first work for large-scale domain adaptive tree crown detec-
tion using multi-source and multi-temporal remote sensing images.

(2) We integrate batch normalization and instance normalization as
Batch-Instance Normalization (BIN) block. BIN block is embedded

Fig. 1. The spectral distribution of different classes in Image A and Image B. The histograms denote the mean histogram of all training samples in one category for
Image A and Image B, respectively. We can easily observe the obvious discrepancy between two images in terms of the histogram of each class.
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into our neural network backbone, improving both its general-
ization capacity and classification performance.

(3) We design two types of transferrable attention mechanisms for our
DA part, i.e., the feature level attention mechanism and the entropy
level attention mechanism. Both of them are generated by the do-
main discriminator through adversarial learning that effectively
exploits the transferability of the sample datasets between the
source and the target domains. The higher transferability an image
has, the higher attention value it achieves. That is, the image with
more transferrable context will have a higher weight in the neural
networks.

The remainder of this paper is organized as follows. We introduce
the related work about tree crown detection and DA in next section.
Following that, we introduce our proposed MADAN in detail in Section
3, and present our large-scale study area and dataset in Section 4. We
analyze and compare the oil palm tree counting and detection results of
our proposed MADAN and other DA approaches in Section 5, followed
by comprehensive ablation experiments in Section 6. At last, we sum-
marize our paper and present our future works in Section 7.

2. Related work

2.1. Tree crown detection

The previous work related to tree crown detection can be classified
into classical image processing methods, traditional machine learning
methods, and deep learning methods. Classical image processing
methods usually include image binarization, local maximum filter and
image segmentation, etc. (Daliakopoulos et al., 2009; Wulder et al.,
2000; Chemura et al., 2015). Although these methods do not require
labels, complex scenarios such as overlapping tree crowns may cause
deterioration of detection results. As for traditional machine learning
methods, many algorithms have been applied to tree crown detection,
including random forest, support vector machine (SVM), artificial
neural network, etc. (Dalponte et al., 2014; Hung et al., 2012; Pu and
Landry, 2012; Wang et al., 2019b). For instance, Wang et al., 2019b
automatically detect oil palms in Malaysia for Unmanned Aerial Vehicle
(UAV) images using the histogram of oriented gradient (HOG) and SVM
classifier, which obtained the overall accuracy of over 94%. Traditional
machine learning methods make great progress compared with classical
image processing methods, but most of them require sophisticated
techniques or very-high-resolution UAV images. Following the
achievement of AlexNet (Krizhevsky et al., 2012), many deep learning
algorithms have been developed and successfully adopted to lots of
remote sensing tasks since 2014 (Dong et al., 2019; Ienco et al., 2019; Li
et al., 2019b; Wu et al., 2019). In 2016, Li et al. (2016b) applied deep
learning-based method to tree crown detection. After that, they pro-
posed a two-stage CNN that achieved a higher average F1-score of
92.80%, exceeding single-stage CNN and other traditional machine
learning based methods (Li et al., 2019a). Moreover, Mubin et al.
(2019) and Neupane et al. (2019) utilized sliding window-based ap-
proach combined with deep learning to detect oil palm trees and ba-
nana plants, respectively. In summary, most of recent studies adopt a
machine learning or deep learning-based classifier combined with a
sliding window-based method to detect tree crowns from satellite
images.

Deep learning, which is known for its remarkable capacity of feature
extraction, requires a large number of labeled samples. The aforemen-
tioned methods were only applied to detecting tree crowns in a parti-
cular region, and both the training and test images were photographed
in the same condition. Existing studies have not explored the general-
ization and transferability of their models and simply focus on the ac-
curacy of local regions, assuming that they were strong enough in areas
without training samples.

2.2. Domain adaptation

DA belongs to transfer learning, and it has been widely used for
image classification. In general, we can classify DA into three cases:
discrepancy-based DA, adversarial-based DA and reconstruction-based
DA according to Csurka (2017). The first case, discrepancy-based DA,
such as Kullback-Leibler (KL) divergence, maximum mean discrepancy
(MMD) and correlation alignment (CORAL), etc. (Ghifary et al., 2014;
Tzeng et al., 2014; Long et al., 2015; Zhuang et al., 2015; You et al.,
2019; Wang et al., 2019c), assumes that fine-tuning the deep network
model with labeled or unlabeled target data can diminish the shift
between the two domains. According to Wang & Deng (2018), class
criterion, statistic criterion, architecture criterion and geometric cri-
terion are four major techniques for performing fine-tuning. As for
adversarial-based DA case, scholars assign a discriminator to classify
whether an image is derived from the source domain or the target
domain, and try to train the discriminator not to distinguish the two
domains well by an adversarial objective, mapping the target images to
the same space (Ganin, & Lempitsky, 2015; Ganin et al., 2016; Wang
et al., 2019a; Chen et al., 2019). The main idea in reconstruction-based
DA is diminishing the differences between the original and re-
constructed images via generative adversarial network (GAN) dis-
criminator (Ghifary et al., 2016; Kim et al., 2017).

DA has been exploited in the remote sensing community to cope
with multi-temporal and multi-source satellite images, where differ-
ences in atmospheric illuminations and ground conditions can easily
ruin the adaptation of a model (Bruzzone and Persello, 2009; Ma et al.,
2019; Matasci et al., 2015; Samat et al., 2016; Volpi et al., 2015; Yan
et al., 2018b, 2019; Zhu et al., 2019). In 2009, Bruzzone & Persello
(2009) proposed a feature selection method accomplished by a multi-
objective criterion function to improve the discrimination in hyper-
spectral image classification. After that, they presented an approach to
iteratively label and add samples, as well as remove the samples in the
source domain that do not fit with the target domain. That is, they use
active learning (AL) to address DA problems. Matasci et al. (2015)
analyzed the effectiveness of TCA in multi- and hyperspectral image
classification, and explored its unsupervised and semi-supervised im-
plementation. Samat et al. (2016) used GFK based SVM for hyper-
spectral image classification to solve the different distributions between
training and validation datasets. The literatures mentioned above ap-
plied traditional DA methods to remote sensing image classification.
For deep learning based DA approaches, Zhu et al. (2019) proposed a
semi-supervised adversarial learning domain adaptation framework for
scene classification, reaching the overall accuracy of over 93% in dif-
ferent temporal aerial images. Ma et al. (2019) presented a deep DA
method for hyperspectral image classification based on a domain
alignment module, a task allocation module, and a DA module.

Existing DA methods mainly concentrate on the classification task.
Hence, almost all of these studies utilized DA methods for land cover
and land use classification, hyperspectral images classification, and
scene classification. On the contrary, the study of domain adaptive
object detection and semantic segmentation is still at a considerably
earlier stage (Yan et al., 2018a; Benjdira et al., 2019; Koga et al., 2020).
In semantic segmentation, Benjdira et al. (2019) used GANs to reduce
the domain shift of aerial images, improving the average segmentation
accuracy from 14% to 61%. As for object detection, to the best of our
knowledge, Koga et al. (2020) firstly applied CORAL and adversarial
DA to vehicle detection from satellite images so far. However, although
they improve the result of vehicle detection from 66.3% to 76.8%, there
still exist a nonnegligible gap between the source and the target do-
main, of which the accuracy is almost 10% lower than the upper bound
(obtained through directly training on the target dataset).

Based on the above analysis, in this paper, we proposed MADAN, a
domain adaptive oil palm tree counting and detection algorithm.
MADAN improves the capacity of generalization and transferability for
cross-regional oil palm tree detection from multi-source and large-scale
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remote sensing images. It is the first work for large-scale domain
adaptive tree crown detection, achieving a high detection accuracy and
reducing the manual annotation efforts.

3. Madan

3.1. Overview of our proposed method

In this paper, we concentrate on unsupervised domain adaptive oil
palm detection across two different remote sensing images, which
consists of an annotated source domain dataset = =D x y{( , )}S i

S
i
S

i
n

1
S in the

source region (RS) and an unlabeled target domain dataset = =D x{ }T i
T

i
n

1
T

in the target region (RT), where xi is an example and yi is the corre-
sponding label; nS and nT are the quantity of samples in the source and
target dataset, respectively. Notably, DS is collected from RS and DT is
collected from RT . DA problems usually focus only on decreasing the
distribution discrepancy between DS and DT , while in remote sensing
domain, the key goal is to improve the prediction results not only in DT ,
but also in RS and RT . As a result, we added Batch-Instance
Normalization (BIN) blocks into the deep network to improve its gen-
eralization ability. For example, in Fig. 2, we assume Image A as the
source region (RS) and Image B as the target region (RT). The collected
datasets in Image A and Image B are DS and DT , respectively. Our goal
is to boost the classification accuracy of DT and improve the detection
result of RT (i.e. Image B).

In our framework, we manually annotated samples in the source
domain, and randomly selected a suitable amount of images (without
manually annotated labels) in the target domain. Fig. 2 shows the fra-
mework of MADAN, including a BIN-based feature extractor, an at-
tention-based adversarial learning with minimum entropy regulariza-
tion, and an IOU based post-processing. We summarize the four major
procedures of MADAN as follows.

(1) A BIN-based feature extraction for improving the generalization
capacity. Both the labelled source data and the unlabeled target data
are used as the input of the deep neural network. Here, we use 5

convolutional layers and 1 pooling layer in our feature extractor as the
size of an input image is only 17 × 17 pixels. Following each con-
volutional layer, we integrate a batch normalization layer and an in-
stance normalization layer, followed by an activation layer.

(2) An adversarial learning based multi-level attention mechanism
for improving the transferability. We propose a feature level attention
and an entropy level attention, which are generated by shallow feature
and deep feature based adversarial discriminators, respectively. The
feature level attention is assigned to the feature map and the entropy
level attention is assigned to the entropy penalty. Meanwhile, besides
the deep feature based domain loss, we add a shallow feature based
domain loss to avoid information loss because of pooling layer.

(3) A minimum entropy regularization for improving the prediction
confidence. Besides label prediction loss in the source domain, we add a
minimum entropy regularization with an entropy level attention value
to enhance the positive transfer for each image.

(4) Sliding window based reference and IOU based post-processing.
After training the whole model, we partition the test images with
overlaps, and predict the type of each sample in the test images. At last,
we adopt IOU based metric to merge the detected oil palm trees that are
very close, then we can get the final detection results in test images.

3.2. BIN based feature extractor

AlexNet was proposed in 2012 and received great success in the
academic community. It consists of 5 convolutional layers, 3 max-
pooling layers, and 3 fully-connected layers (Krizhevsky et al., 2012).
Our network is similar to AlexNet, consisting of 5 convolutional layers
and 3 fully-connected layers, while only 1 max-pooling layer is used as
the size of our input image is only 17 × 17 pixels. Inspired by IBN-Net
(Pan et al., 2018), we replace each convolutional layer of AlexNet with
a BIN block, which is proposed to strengthen the generalization of our
model.

The first two layers of our BIN block are the convolutional layer and
the batch normalization (BN) layer (Ioffe and Szegedy, 2015). Although

Fig. 2. The overall framework of our proposed MADAN.
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BN can effectively accelerate the convergence of the model, it makes
CNNs vulnerable to appearance transforms such as the discrepancy
between different satellite images for oil palm detection. So we add an
instance normalization (IN) layer to eliminate the individual contrast as
well as keep appearance and visual invariance, which was exploited in
style transfer at first (Ulyanov et al., 2016). As illustrated in the left-
bottom of Fig. 2, each BIN block contains a convolutional layer, a BN
layer, an IN layer and a ReLU layer. Our BIN based feature extractor
helps to enhance the generalization of our architecture. That is, we only
use labeled source domain dataset and assume that the target domain is
completely “unseen” before.

3.3. Adversarial learning based multi-level attention mechanism (MLA)

Adversarial learning based multi-level attention mechanism is de-
signed for improving the transferability of our model. The adversarial
learning has been successfully used in previous domain adaptation
studies (Ganin, & Lempitsky, 2015; Ganin et al., 2016; Chen et al.,
2019). Attention mechanism has attained significant effect in im-
proving the performance of deep learning (Chen et al., 2016; Wang
et al., 2017). Transferable attention enables the model to pay more
attention to transferable information of an image across domains,
through assigning different weights for each pixel of an image. Wang
et al. (2019a) applied attention mechanism to domain adaptation,
which not only enables the model to pay attention to an image from the
source domain, but also connect this attention to an image of interest
from the target domain. In our proposed approach, we designed a multi-
level attention mechanism through adversarial learning, including a
feature level attention and an entropy level attention. In our proposed
attention mechanism, the higher transferability an image has, the
higher attention value it achieves. That is, the image with more trans-
ferrable context will have a higher weight in the neural networks. De-
tails of the feature level attention and entropy level attention are in-
troduced as follows.

3.3.1. Shallow feature based domain loss and feature level attention
As introduced in Section 3.2, we obtain the features from source and

target datasets using a BIN based feature extractor, which are denoted
by FS and FT , respectively. However, above features are generated by a
pooling layer, which may lose some effective information in shallow
features. As a consequence, our feature level attention is generated by
the features before the pooling layer, which are denoted by F 'S and F 'T .
As mentioned above, images do not perform equally well for transfer-
ring across domains, and some input images are more transferable than
others. For example, the images from the target dataset that are sig-
nificantly dissimilar in the feature space across domains may have a
negative effect for transferability, and thus they may confuse the clas-
sifier. Accordingly, we apply a domain discriminator to obtain the
feature level attention via adversarial learning, and the loss function of
the shallow feature based domain discriminator (LS) can be formulated
as:

=L
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S and = =F f{ }T
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n' '

1
T . Gd is the shallow feature

based domain discriminator and Ld is the cross-entropy loss of Gd. di is
equal to 1 for the source domain dataset and 0 for the target domain
dataset. For more explanation, the output of G f( )d i is the probability
(di

F ) of the feature map in image i belonging to the source domain.
When di

F is larger than 0.5, it denotes that the feature map belongs to

the source domain, and when the probability is lower than 0.5, it re-
presents that it belongs to the target domain. The goal of our feature
level attention is to find the images that have a good capacity of
transferability between source and target domains. So in order to pay
more attention to images with higher transferability, we use informa-
tion entropy, also called Shannon entropy, to describe uncertainty,
which is defined as =E p p p( ) log( )d d d , where =pd 0 means the
probability of the image belonging to the target domain while =pd 1
represents the probability of the image belonging to the source domain.
According to the information theory, the larger the entropy is, the more
information the probability has and the better transferability the image
has. In other words, if di

F is approaching 0.5, our network is harder to
identify whether image i is belonging to the source or the target do-
main, and thus the image is more transferrable. So the final feature
level attention value (vi

F ) for each feature map can be calculated as:

= +v E d1 ( )i
F

i
F (4)

In this way, we can effectively quantify the transferability of the
image. Then we are supposed to tell the network which feature maps
are fitting for our cross-regional oil palm tree detection, and which
feature maps may have negative effect to some extent. Accordingly,
inspired by Wang et al., 2017, we add a connection between the feature
map and the feature level attention value, and finally transformed the
feature map according to formula (13):

= +h f v(1 )i i i
F (5)

where fi is the feature in the last convolutional layer and hi is the
new feature map containing the information of transferability, in which
the features with better transferability are weighted by a higher feature
level attention value.

3.3.2. Deep feature based domain loss and entropy level attention
In Section 3.3.1, we obtain the deep features from the 5th BIN block

with feature level attention. We can calculate the deep feature based
domain loss (LD) according to following formulas:

=L
n
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S h H
d d i
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i
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i
S S (6)
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= +L L LD D
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D
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where and LD
T denote the source and the target domain loss based on

deep features with feature level attention. Ld, Gd, di
S and di

T are the
same as those used in shallow feature based domain loss. In this way,
our domain loss comprises the shallow feature based domain loss and
the deep feature based domain loss, which comprehensively consider
the transferability of the feature maps from the last and the 2nd BIN
block. Similar to the feature level attention, we define an entropy level
attention that is assigned to the entropy loss, which is introduced in
Section 3.4. Images that are not transferable in our domain adaptive
method may have a negative effect on entropy loss, thus our entropy
level attention value (vi

E) can be defined as:

= +v E d1 ( )i
E

i
E (8)

where di
E is generated by G h( )d i and means the probability of the

final feature map (hi) in image i belonging to the source domain. E ( )
means the information entropy that is the same as the one in formula
(12). The more transferable the corresponding image is, the larger the
entropy level attention value is. In the next section, we will introduce
the minimum entropy regularization and how the entropy level atten-
tion affects the entropy loss.
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3.4. Minimum entropy regularization (MER)

Minimum entropy regularization is designed to strengthen the
prediction confidence of our model. Inspired by the idea of entropy
function in information theory, entropy loss is proposed to reduce the
uncertainty of probabilities for output classes. In 2005, Grandvalet and
Bengio (2005) proposed the minimum entropy regularization (MER) for
semi-supervised learning, and Long et al. (2016) firstly exploited the
minimum entropy regularization on target domain data DT , making the
classifier more accessible to the unlabeled target data. In this section,
we employ minimum entropy regularization for both target data and
source data, and assign entropy level attention value to the entropy
penalty. The benefits of this strategy are twofold. On the one hand,
there exist great similarity between the oil palm tree type and the
background type, which can easily be understood in Fig. 1. MER helps
to improve the prediction confidence for samples that are easy to be
confused with other types. On the other hand, some images in the target
domain are not transferable, such as the images with a low similarity in
terms of the feature space across domains. Since these untransferable
images are easier to be mistakenly classified, increasing their prediction
confidence will confuse the classifier. To solve this problem, our en-
tropy loss is weighted by the entropy level attention value, which is
generated by a deep feature based adversarial discriminator. We embed
the entropy level attention into the entropy loss according to formula
(9):

=
= =

=
L

n
v p log p1 ( )E

i

n

c

C

i
E

i c i c
1 1

4

, ,
(9)

where LE is the entropy loss. vi
E is the entropy level attention. C is

the number of classes, which is 4 in our oil palm tree detection algo-
rithm. pi c, is the prediction probability of classifier for image xi corre-
sponding to class c , and we can acquire them according to the equation
of =p G h( )i y i , where Gy is the classifier of our deep domain network
and hi is attained from the transformed feature map H( ) with feature
level attention.

In this way, the entropy level attention based minimum entropy
regularization makes the prediction of our images more certain and
confident and thus effectively improves the classifier’s performance.
Reasonably, our DA method with attention mechanism and minimum
entropy regularization is naturally transferable across domains. In total,
we can finally summarize our loss function as follows:

= + + +L L µ L L LC
S

S D E (10)

where µ, and are the hyper-parameters that trade-off among
shallow feature based domain loss, deep feature based domain loss and
entropy loss. LC

S is the classification loss of the labelled source domain
dataset and can be formulated as:

=L
n

L G h y1 ( ( ), )C
S

S x D
y y i i

i S (11)

where Ly is the cross-entropy loss function and Gy is the classifier
employed for making a final prediction for the source domain images.

3.5. IOU based post-processing

In previous sections, we discussed the training procedures of our
proposed domain adaptive oil palm tree counting and detection, while
in this part, we introduce our method in the prediction phase. First of
all, we crop the original test image based on overlapping partitioning
rules via a sliding window technique. We set the sliding step as 3 pixels
following Li et al. (2017). After that, we predict each image using the
MADAN model.

The right of Fig. 4 illustrates the results after direct prediction, and
we can see that there are many detected oil palms around one oil palm.
Li et al. applied a time consuming method that iteratively merged the
detected oil palms based on the distance (Li et al., 2016). We adopt the
IOU based principle to merge the detected oil palms that are close to
each other. IOU is a popular evaluation metric used for measuring the
accuracy of the detection results, and it is also used for merging de-
tected objects in many end-to-end object detection algorithms. Here, we
merge two detected oil palms if their IOU value is equal to or higher
than a threshold and average their coordinates. So the final oil palm’s
coordinates can be calculated as:

=
=

X Y X Y
n

x y x y( , , , ) 1 ( , , , )lt lt rb rb
i

n

lt i lt i rb i rb i
1

, , , ,
(12)

where the subscripts lt and rb mean the left top and right bottom, n
represents the number of detected oil palms of which the IOU is lower
than a threshold. IOU based merging is more efficient than distance-
based merging as it only merges the detected oil palms once instead of
iteratively. Ultimately, we accomplish the cross-regional oil palm tree
detection via MADAN.

4. Study area and datasets

Our study area locates in the Peninsular Malaysia (Fig. 3), where the
oil palm plantation is expanding increasingly and threatening the local
environment and native species. According to the statistics in 2016,
47% of Malaysia oil palm plantation was in the Peninsular Malaysia
(Tang and Al Qahtani, 2019). We have three high-resolution satellite
images, Image A, Image B and Image C. Table 1 shows the elaborate
information of these three satellite images. They are acquired from
different sensors and locations, and the interval of photograph date is
over 10 years, resulting in differences in reflectance, resolution, illu-
mination and environmental conditions. As shown in Fig. 4, samples of
the same class in three images look quite distinguishing in character-
istics and textures. Moreover, we preprocessed the three images in two
steps. First, we employed a spectral sharpening method to Image A, and
removed its NIR band. Second, to unify the resolution of these images to
0.6 m, we downsampled Image B and Image C to 5,120 × 5,120 and

Fig. 3. The location of our study area.
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5,248 × 5,120 pixels by bilinear interpolation algorithm.
Fig. 4 shows where and how our samples were collected. The

training samples were collected from training areas (denoted by rec-
tangles with solid lines) and validation samples were collected from the
validation areas (denoted by rectangles with dotted lines). We manually
interpreted four types of objects, including background, oil palm tree,
other vegetation, and impervious or cloud. There are four types of
objects in Image A and Image B, and three types of objects in Image C
(without the type of impervious or cloud). The background and oil palm
trees were collected from regions denoted by black rectangles. Other
vegetation and impervious (or cloud) were collected from regions de-
noted by green squares and blue squares, respectively. We use 17 × 17
pixels as the sample size for all types following previous oil palm de-
tection studies (Li et al., 2017; Li et al., 2019a), which is similar to the
largest crown size of a mature oil palm on these images. To evaluate our
proposed MADAN for cross-regional oil palm tree detection, we detect
the oil palms in the whole area of the three satellite images and com-
pare the results with the manually annotated ground truth datasets.

5. Experimental results

In this section, we evaluate the experiment results of our proposed
MADAN for oil palm tree crown detection. First, we present the ex-
perimental setup and our evaluation metric in Section 5.1. And then we
describe the oil palm tree detection results of MADAN in Section 5.2,
followed by comparison with other state-of-the-art domain adaptation
algorithms in Section 5.3.

Fig. 4. Examples of samples manually collected from different regions in Image A (left), Image B (middle) and Image C (right), respectively. Image A and Image B
have four land cover types, while Image C has three land cover types (without impervious or cloud).

Table 1
The main information of Image A, Image B and Image C.

Index Image A Image B Image C

Source QuickBird Google Earth Google Earth
Longitude and

latitude
103.5991E,
1.5967N

103.0518E,
5.0736N

100.7772E,
4.1920N

Spectral RGB, NIR RGB RGB
Acquisition

date
November 21, 2006 July 17, 2017 December 21, 2015

Resolution 0.6 m 0.3 m 0.3 m
Image size 12,188 × 12,576

pixels
10,240 × 10,240
pixels

10,496 × 10,240
pixels

Area 55.18 km2 9.44 km2 9.67 km2

The number
of oil
palms

291,827 47,917 91,357

Table 2
The detection results of MADAN.

Index A → B A → C B → A B → C C → A C → B

TP 40,988 81,515 269,389 85,673 269,922 41,241
FP 8048 3830 63,420 15,414 105,944 19,498
FN 6929 9842 22,438 5684 21,905 6676
Precision 83.59% 95.51% 80.94% 84.75% 71.81% 67.90%
Recall 85.54% 89.23% 92.31% 93.78% 92.49% 86.07%
F1-score 84.55% 92.26% 86.25% 89.04% 80.85% 75.91%
Average F1-score 84.81%

Table 3
The F1-scores of different DA methods for all six transfer tasks. The highest F1-scores obtained from different methods are shown in bold.

Index A → B A → C B → A B → C C → A C → B Average

Baseline 65.63% 81.38% 70.15% 77.39% 62.74% 55.39% 68.78%
TCA 64.36% 85.21% 66.47% 76.71% 65.84% 63.30% 70.32%
GFK 66.49% 88.55% 69.34% 78.21% 69.70% 63.09% 72.56%
DANN 67.05% 85.84% 71.82% 81.76% 70.06% 64.09% 73.44%
DDC 80.92% 89.39% 73.87% 86.14% 71.45% 63.40% 77.53%
Deep CORAL 78.92% 86.79% 74.96% 89.35% 72.30% 66.10% 78.07%
DAN 77.90% 88.54% 80.24% 91.62% 75.91% 73.32% 81.26%
MADAN (ours) 84.55% 92.26% 86.25% 89.04% 80.85% 75.91% 84.81%
Upper bound 85.70% 94.02% 90.68% 94.02% 90.68% 85.70% 90.13%
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5.1. Setup and evaluation metric

We complement our experiments based on the PyTorch deep
learning framework (Paszke et al., 2019), and we set = =µ 0.1 and

= 1.0 throughout all our experiments. The batch size is set as 128. The
learning rate is 0.001. We train our model using GeForce RTX 2080 Ti.
Moreover, we choose Adam (Kingma, & Ba, 2014) as our optimizer for

training the domain discriminator and the classifier. We test our model
after 20 epochs. The curve of training loss and the accuracy of valida-
tion dataset are illustrated in Appendix A.

Our evaluation metric consists of precision, recall and F1-score.
Precision depicts the model’s capability of detecting oil palms correctly,
while recall describes the model’s capability of detecting ground-truth
oil palms. F1-score evaluates the overall performance of the model.

Fig. 5. The detection results in Region 1 for Image A → Image B.

Fig. 6. The detection results in Region 1 for Image A → Image C.
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They can be calculated from the following formulas:

=
+

×precision TP
TP FP

100% (13)

=
+

×recall TP
TP FN

100% (14)

=
+

×F score precision recall
precision recall

1 2 100%
(15)

where TP means true positives, denoting the number of palms that are
detected correctly; FP means false positives, denoting the number of
others that are detected as palms by mistake; FN means false negatives,
denoting the number of ground-truth palms that are missing in

Fig. 7. The detection results in Region 1 for Image B → Image A.

Fig. 8. The detection results in Region 1 for Image B → Image C.
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detection results. When the IOU metric value between the detected
palm and a ground-truth oil palm tree is greater than or equal to 0.5, an
oil palm tree will be called as correctly detected.

5.2. Oil palm tree counting and detection results via MADAN

To validate the performance of MADAN, we detect the oil palms

across the whole satellite images. There are six transfer tasks: (1) Image
A → Image B (A → B); (2) Image A → Image C (A → C); (3) Image B →
Image A (B → C); (4) Image B → Image C (B → C); (5) Image C → Image
A (C → A); (6) Image C → Image B (C → B). Table 2 displays the results
of our proposed MADAN, with respect to TP, FP, FN, precision, recall,
F1-score and average F1-score. We can find that our proposed method
achieves an average F1-score of 84.81% for all six transfer tasks. In the

Fig. 9. The detection results in Region 1 for Image C → Image A.

Fig. 10. The detection results in Region 1 for Image C → Image B.
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meanwhile, when we set Image C as source domain, the detection re-
sults, especially the precision, is lower than other cross domain tasks. It
might be the reason that Image C only has three object types (back-
ground, oil palm tree and other vegetation), causing more confusion
between oil palms and other object types.

5.3. Results comparison between MADAN and other DA approaches

We compare our proposed MADAN methods with other state-of-the-
art DA methods. For traditional DA methods, we present the results of
TCA (Pan et al., 2010) and GFK (Gong et al., 2012). As for deep
learning-based DA methods, we select DDC (Tzeng et al., 2014), DAN
(Long et al., 2015), DANN (Ganin et al., 2016) and Deep CORAL (Sun
and Saenko, 2016). Table 3 lists the results of above mentioned DA
methods and our MADAN methods. We also show the F1-score of the
Baseline method (AlexNet based method trained by the labeled source
dataset) and the upper bound (AlexNet based method trained by the
labeled target dataset) as a reference. We illustrate the detection results
in 24 regions for 6 transfer tasks (4 regions for each task). We can
observe the detection results in Figs. 5–10, which describe the perfor-
mance of one example region for 6 transfer tasks. More detection results
can be found in Appendix B. The green points denote the correct de-
tected oil palms, the yellow circles denote the ground-truth oil palms
that are missing, and the red squares with red points denote other types
of objects like other vegetation or building corners that are detected as
oil palms by mistaken. Results demonstrate that MADAN outperforms
other DA methods in all six transfer tasks except Image B → Image C,
and achieves the highest average F1-score among eight methods The
F1-score of MADAN is very close to the upper bound for A → B and
A → C. We also evaluate the impact of data augmentation (horizontal
flipping, vertical flipping and brightness transformation) on the

Baseline and MADAN methods in Table 4. Experimental results show
that the data augmentation strategy improves the detection accuracy of
baseline method by 2.04%, while has little impact on the results of
MADAN. Furthermore, we list the efficiency of different DA methods in
Table 5. Although our method has the largest number of parameters
and the FLOPs (floating point of operations), the inference time (ms per
image) is comparable with other DA methods. TCA and GFK are quite
slow due to the complicated matrix transformation and iteration in
computation progress.

6. Discussion

In this part, we assess the effectiveness of each strategy in our
proposed MADAN through comprehensive ablation experiments.
Table 6 shows the results of Baseline, Baseline + BIN, MADAN (without
MER), and MADAN. We present a comprehensive analysis of each
strategy as follows. Notably, in BIN, we only employ the labeled source
domain dataset without the target domain dataset. In MLA and MER,
we employ both the labeled source domain dataset and the unlabeled
target domain dataset.

6.1. Ablation study of the BIN block

To explicitly explore how BIN achieves better generalization, we
analyze the feature divergence caused by domain bias. In this paper, we
select the features in ReLU layer (denoted by R) to calculate the di-
vergence between the source and the target datasets. Following pre-
vious studies (Li et al., 2016; Tu et al., 2019), we assume a Gaussian
distribution of R, with mean µ and variance 2. Our divergence can be
calculated as follows:

= +D R R KL R R KL R R( ) ( ) ( )S T S T T S (16)

= +
+

KL R R log
µ µ

µ
( )

( )
2

1
2S T

S

T

S S T

T

2 2

2 (17)

where RS and RT denote the features from the source dataset and the
target dataset, respectively. KL R R( )S T means Kullback-Leibler (KL)
divergence between the source feature and the target feature. D R R( )S T
means the symmetric KL divergence between RS and RT . The average
divergence of all layers can be formulated as:

=
= =

D L L
L C

D R R( ) 1 ( )S T
l

L

c

C

S
l c

T
l c

1 1

, ,

(18)

where RS
l c, represents the source feature of the cth channel in the lth

Table 4
The F1-score of Baseline and MADAN with/without augmentation strategy.

Index A → B A → C B → A B → C C → A C → B Average

Baseline 65.63% 81.38% 70.15% 77.39% 62.74% 55.39% 68.78%
Baseline + Augmentation 68.04% 83.06% 71.05% 83.68% 64.59% 54.48% 70.82%
MADAN 84.55% 92.26% 86.25% 89.04% 80.85% 75.91% 84.81%
MADAN + Augmentation 83.18% 93.15% 82.02% 88.64% 82.49% 75.02% 84.08%

Table 5
The efficiency of different DA methods.

Index Number of Parameters
(M)

GFLOPs Inference time (ms per
image)

Baseline 56.82 0.43 1.54
TCA 2.25 0.32 8.66
GFK 2.25 0.32 10.15
DANN 67.31 0.45 1.80
DDC 56.82 0.43 1.76
Deep CORAL 56.82 0.43 1.72
DAN 56.82 0.43 2.04
MADAN (ours) 77.80 0.48 2.01

Table 6
The F1-scores of Baseline, Baseline + BIN, MADAN (without MER) and MADAN.

Index A → B A → C B → A B → C C → A C → B Average

Baseline 65.63% 87.70% 70.15% 77.39% 62.74% 55.39% 69.93%
Baseline + BIN 68.67% 86.25% 73.94% 80.68% 68.30% 59.43% 72.88%
MADAN (without MER) 81.36% 89.90% 80.28% 84.43% 76.24% 68.37% 80.10%
MADAN 84.55% 92.26% 86.25% 89.04% 80.85% 75.91% 84.81%
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layer. L and C means the number of layers in the network and the
number of channels in a certain layer, respectively (Li et al., 2017,
2019a). The smaller the average divergence is, the more powerful the
generalization of network is.

We evaluate the mean feature divergence of Baseline and
Baseline + BIN for all six transfer tasks in Fig. 11 and our BIN blocks
obviously reduce the feature divergence between source and target
domains. The final detection results listed in Table 4 are consistent with
the performance of feature divergence. Results demonstrate that our
BIN based feature extractor can effectively enhance the generalization

ability of the model and improving the accuracy of the “unseen” target
domain dataset when only using training samples of the source domain.

6.2. Ablation study of the minimum entropy regularization

In Section 3.4, we propose an entropy loss weighted by entropy
level attention value for MER, Table 4 shows that MER improves the F1-
scores by 2.36–7.54% for six transfer tasks, and improves the average
F1-score by 4.71%. Fig. 12 further demonstrates the effectiveness of
MER. The x-axis denotes 4 classes and the y-axis denotes the prediction

Fig. 11. The average feature divergence of all ReLU layers among different domains for Baseline and Baseline + BIN. The final detection results are consistent with
the performance of feature divergence.

Fig. 12. The effectiveness of MER. These four samples are from Image B → Image A task. For each group, the left image is the sample image, while the middle and the
right histogram is the prediction probabilities of MADAN without and with MER, respectively. The x-axis denotes 4 classes including background, oil palm tree, other
vegetation and pervious/cloud. The y-axis denotes the prediction probabilities of above 4 classes. We can find that the entropy loss weighted by entropy level
attention value enables the model to make predictions more confidently.

Table 7
The F1-scores of ablation experiments about multi-level attention mechanism.

Index A → B A → C B → A B → C C → A C → B Average

Baseline + no attention 72.83% 87.97% 74.53% 84.06% 72.63% 65.66% 76.28%
Baseline + feature level attention 76.05% 88.79% 74.16% 87.93% 72.70% 65.75% 77.56%
Baseline + entropy level attention 77.47% 89.90% 79.32% 88.46% 73.35% 63.26% 78.63%
Baseline + multi-level attention 80.22% 91.67% 80.83% 89.97% 75.24% 66.79% 80.79%
BIN + no attention 79.23% 88.54% 80.11% 88.18% 74.28% 66.99% 79.56%
BIN + feature level attention 81.18% 90.06% 83.45% 90.08% 76.45% 67.88% 81.52%
BIN + entropy level attention 83.23% 92.30% 86.04% 88.95% 81.18% 70.75% 83.74%
BIN + multi-level attention (MADAN) 84.55% 92.26% 86.25% 89.04% 80.85% 75.91% 84.81%
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probabilities of them. After embedding MER, the distribution of the
prediction probabilities is unimodal instead of bimodal. We can con-
clude that our proposed MER enables the model to make predictions
more confidently.

6.3. Ablation study of the multi-level attention mechanism

In this section, we evaluate the performance of the MLA. Table 7
lists the results of ablation experiments of the multi-level attention
mechanism. Based on the 4 types of loss including shallow feature
based domain loss, deep feature based domain loss, classifier loss and
entropy loss, we compare the following four cases to evaluate the se-
parate contributions of the feature level attention and the entropy level
attention: (1) no attention mechanism (denoted by Baseline + no at-
tention); (2) only feature level attention mechanism (denoted by
Baseline + feature level attention); (3) only entropy level attention
mechanism (denoted by Baseline + entropy level attention); (4) the
combination of feature level attention and entropy level attention
(denoted by Baseline + multi-level attention). Similarly, we compare
the above four cases based on BIN extractor (denoted by BIN + no
attention, BIN + feature level attention, BIN + entropy level attention,
and MADAN, respectively). Results show that our proposed MLA im-
proves the average F1-score of Baseline method by 4.41%, and im-
proves the average F1-score of Baseline + BIN method by 5.25%. The
entropy level attention performs better than the feature level attention,
and integrating both of them (MLA) obtains the highest average F1-
score. Additionally, we display the attention values of several samples
in Fig. 13. We can observe that the samples with more transferable
context often have a higher attention value.

7. Conclusions

In this paper, we propose a novel domain adaptive oil palm tree
counting and detection method, i.e., a Multi-level Attention Domain
Adaptation Network (MADAN). MADAN comprises four procedures:
BIN based feature extractor, multi-level attention mechanism (MLA),
minimum entropy regularization (MER), and IOU based post-proces-
sing. We integrate instance normalization and batch normalization into
our BIN block, which effectively enhances the generalization perfor-
mance of our network only with source domain dataset. Our proposed
multi-level attention mechanism is generated by an adversarial neural
network, including feature level attention and entropy level attention.
Feature level attention applies weights to the final feature map and
entropy level attention applies weights to the entropy of label predic-
tion. MLA improves the transferability of model with unlabeled target
domain images. Furthermore, we present minimum entropy

regularization with entropy loss to make our prediction more confident.
As for reference phase, we adopt a sliding window based technique and
an IOU based post-processing to acquire final oil palm detection results
for the target image.

We evaluate our proposed method using three large-scale satellite
images (denoted by Image A, Image B and Image C) located in the
Peninsular Malaysia. Our comprehensive ablation experiments show
that our BIN based extractor and multi-level attention mechanism in-
crease the capacity of generalization and transferability, respectively.
Only with labelled source domain images, BIN based feature extractor
improves the average F1-score by 3.05% compared with Baseline. After
adding unlabeled target domain images, MLA increases the average F1-
score by 11.93% compared with Baseline + BIN. MER enables our
cross-regional oil palm detection model to make predictions more
confidently, improving the average F1-score by 3.29% compared with
Baseline + BIN + MLA. Based on the above three strategies, our pro-
posed MADAN improves the average F1-score by 14.98% for all six
transfer tasks, compared with the Baseline method without using DA
approach. MADAN achieves an average F1-score of 84.81% without any
target domain annotation, which are very close to the upper bound
(trained by labeled target datasets) for several transfer tasks. Our
MADAN outperforms other existing domain adaptation methods like
DAN, DDC, Deep CORAL, etc., improving the F1-scores by
3.55–14.49%. In the future, we will explore and develop more effective
DA algorithms, and apply them to end-to-end oil palm counting and
detection methods. We will also detect oil palm trees in a larger-scale
and more complex area using multi-source and multi-temporal remote
sensing images.
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Fig. 13. The feature level attention value of some target domain samples for Image B → Image A task (left) and Image A → Image B task (right). The samples with
more transferable context often have a higher attention value.
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Appendix A. The curve of training loss for all six transfer tasks and the accuracy of the validation dataset

See Fig. A1.

Appendix B. Detection results for MADAN and other DA methods in more regions

See Figs. B1–B18.

Fig. A1. The curve of training loss for all six transfer tasks (left) and the accuracy of the validation dataset (right).

Fig. B1. The detection results in Region 2 for Image A → Image B.
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Fig. B2. The detection results in Region 3 for Image A → Image B.

Fig. B3. The detection results in Region 4 for Image A → Image B.
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Fig. B4. The detection results in Region 2 for Image A → Image C.

Fig. B5. The detection results in Region 3 for Image A → Image C.
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Fig. B6. The detection results in Region 4 for Image A → Image C.

Fig. B7. The detection results in Region 2 for Image B → Image A.
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Fig. B8. The detection results in Region 3 for Image B → Image A.

Fig. B9. The detection results in Region 4 for Image B → Image A.
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Fig. B10. The detection results in Region 2 for Image B → Image C.

Fig. B11. The detection results in Region 3 for Image B → Image C.
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Fig. B12. The detection results in Region 4 for Image B → Image C.

Fig. B13. The detection results in Region 2 for Image C → Image A.
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Fig. B14. The detection results in Region 3 for Image C → Image A.

Fig. B15. The detection results in Region 4 for Image C → Image A.
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Fig. B16. The detection results in Region 2 for Image C → Image B.

Fig. B17. The detection results in Region 3 for Image C → Image B.

J. Zheng, et al. ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 154–177

175



References

Benjdira, B., Bazi, Y., Koubaa, A., Ouni, K., 2019. Unsupervised domain adaptation using
generative adversarial networks for semantic segmentation of aerial images. Rem.
Sens. 11 (11), 1369. https://doi.org/10.3390/rs11111369.

Bruzzone, L., Persello, C., 2009. A novel approach to the selection of spatially invariant
features for the classification of hyperspectral images with improved generalization
capability. IEEE Trans. Geosci. Remote Sens. 47 (9), 3180–3191. https://doi.org/10.
1109/TGRS.2009.2019636.

Busch, J., Ferretti-Gallon, K., Engelmann, J., Wright, M., Austin, K.G., Stolle, F., Baccini,
A., 2015. Reductions in emissions from deforestation from Indonesia’s moratorium on
new oil palm, timber, and logging concessions. Proc. Natl. Acad. Sci. 112 (5),
1328–1333. https://doi.org/10.1073/pnas.1412514112.

Carlson, K.M., Heilmayr, R., Gibbs, H.K., Noojipady, P., Burns, D.N., Morton, D.C.,
Kremen, C., 2018. Effect of oil palm sustainability certification on deforestation and
fire in Indonesia. Proc. Natl. Acad. Sci. 115 (1), 121–126. https://doi.org/10.1073/
pnas.1704728114.

Chemura, A., van Duren, I., van Leeuwen, L.M., 2015. Determination of the age of oil
palm from crown projection area detected from WorldView-2 multispectral remote
sensing data: the case of Ejisu-Juaben district, Ghana. ISPRS J. Photogramm. Remote
Sens. 100, 118–127. https://doi.org/10.1016/j.isprsjprs.2014.07.013.

Chen, X., Wang, S., Long, M., & Wang, J., 2019, May. Transferability vs. discriminability:
batch spectral penalization for adversarial domain adaptation. In: International
Conference on Machine Learning, pp. 1081–1090.

Chen, L., Yang, Y., Wang, J., Xu, W., Yuille, A.L., 2016. Attention to scale: scale-aware
semantic image segmentation. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3640–3649. https://doi.org/10.1109/CVPR.2016.396.

Cheng, Y., Yu, L., Cracknell, A.P., Gong, P., 2016. Oil palm mapping using Landsat and
PALSAR: a case study in Malaysia. Int. J. Remote Sens. 37 (22), 5431–5442. https://
doi.org/10.1080/01431161.2016.1241448.

Cheng, Y., Yu, L., Zhao, Y., Xu, Y., Hackman, K., Cracknell, A.P., Gong, P., 2017. Towards
a global oil palm sample database: design and implications. Int. J. Remote Sens. 38
(14), 4022–4032. https://doi.org/10.1080/01431161.2017.1312622.

Cheng, Y., Yu, L., Xu, Y., Lu, H., Cracknell, A.P., Kanniah, K., Gong, P., 2018. Mapping oil
palm extent in Malaysia using ALOS-2 PALSAR-2 data. Int. J. Remote Sens. 39 (2),
432–452. https://doi.org/10.1080/01431161.2017.1387309.

Chopra, S., Balakrishnan, S., Gopalan, R., 2013, June. Dlid: Deep learning for domain
adaptation by interpolating between domains. In: ICML Workshop on Challenges in
Representation Learning, vol. 2, no. 6.

Csurka, G., 2017. Domain adaptation for visual applications: a comprehensive survey.
arXiv preprint arXiv:1702.05374.

Daliakopoulos, I.N., Grillakis, E.G., Koutroulis, A.G., Tsanis, I.K., 2009. Tree crown de-
tection on multispectral VHR satellite imagery. Photogramm. Eng. Remote Sens. 75
(10), 1201–1211. https://doi.org/10.14358/PERS.75.10.1201.

Dalponte, M., Ørka, H.O., Ene, L.T., Gobakken, T., Næsset, E., 2014. Tree crown deli-
neation and tree species classification in boreal forests using hyperspectral and ALS
data. Remote Sens. Environ. 140, 306–317. https://doi.org/10.1016/j.rse.2013.09.
006.

Donahue, J., Hoffman, J., Rodner, E., Saenko, K., Darrell, T., 2013. Semi-supervised do-
main adaptation with instance constraints. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 668–675.

Dong, R., Li, W., Fu, H., Gan, L., Yu, L., Zheng, J., Xia, M., 2019. Oil palm plantation
mapping from high-resolution remote sensing images using deep learning. Int. J.
Remote Sens. 1–25. https://doi.org/10.1080/01431161.2019.1681604.

Feng, X., Li, P., 2019. A tree species mapping method from UAV images over urban area
using similarity in tree-crown object histograms. Remote Sens. 11 (17), 1982.
https://doi.org/10.3390/rs11171982.

Ganin, Y., Lempitsky, V., 2015, July. Unsupervised domain adaptation by back-
propagation. In: Proceedings of the 32nd International Conference on International
Conference on Machine Learning, vol. 37, pp. 1180–1189. JMLR. org.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Lempitsky,
V., 2016. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17
(1), 2096–12030. https://doi.org/10.1007/978-3-319-58347-1_10.

Ghifary, M., Kleijn, W.B., Zhang, M., 2014. Domain adaptive neural networks for object
recognition. In: Pacific Rim International Conference on Artificial Intelligence.
Springer, Cham, pp. 898–904.

Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W., Li, 2016. Deep reconstruction-
classification networks for unsupervised domain adaptation. In: European Conference
on Computer Vision. Springer, Cham, pp. 597–613.

Gong, B., Shi, Y., Sha, F., Grauman, K., 2012. Geodesic flow kernel for unsupervised
domain adaptation. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, pp. 2066–2073.

Grandvalet, Y., Bengio, Y., 2005. Semi-supervised learning by entropy minimization. In:
Advances in Neural Information Processing Systems, pp. 529–536.

Hung, C., Bryson, M., Sukkarieh, S., 2012. Multi-class predictive template for tree crown
detection. ISPRS J. Photogramm. Remote Sens. 68, 170–183. https://doi.org/10.
1016/j.isprsjprs.2012.01.009.

Ienco, D., Interdonato, R., Gaetano, R., Minh, D.H.T., 2019. Combining Sentinel-1 and
Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep
learning architecture. ISPRS J. Photogramm. Remote Sens. 158, 11–22. https://doi.
org/10.1016/j.isprsjprs.2019.09.016.

Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456.

Kim, T., Cha, M., Kim, H., Lee, J. K., Kim, J., 2017. Learning to discover cross-domain
relations with generative adversarial networks. In: Proceedings of the 34th
International Conference on Machine Learning, vol. 70, pp. 1857–1865. JMLR. org.

Kingma, D. P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Fig. B18. The detection results in Region 4 for Image C → Image B.

J. Zheng, et al. ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 154–177

176

https://doi.org/10.3390/rs11111369
https://doi.org/10.1109/TGRS.2009.2019636
https://doi.org/10.1109/TGRS.2009.2019636
https://doi.org/10.1073/pnas.1412514112
https://doi.org/10.1073/pnas.1704728114
https://doi.org/10.1073/pnas.1704728114
https://doi.org/10.1016/j.isprsjprs.2014.07.013
https://doi.org/10.1109/CVPR.2016.396
https://doi.org/10.1080/01431161.2016.1241448
https://doi.org/10.1080/01431161.2016.1241448
https://doi.org/10.1080/01431161.2017.1312622
https://doi.org/10.1080/01431161.2017.1387309
https://doi.org/10.14358/PERS.75.10.1201
https://doi.org/10.1016/j.rse.2013.09.006
https://doi.org/10.1016/j.rse.2013.09.006
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0070
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0070
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0070
https://doi.org/10.1080/01431161.2019.1681604
https://doi.org/10.3390/rs11171982
https://doi.org/10.1007/978-3-319-58347-1_10
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0095
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0095
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0095
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0100
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0100
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0100
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0105
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0105
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0105
https://doi.org/10.1016/j.isprsjprs.2012.01.009
https://doi.org/10.1016/j.isprsjprs.2012.01.009
https://doi.org/10.1016/j.isprsjprs.2019.09.016
https://doi.org/10.1016/j.isprsjprs.2019.09.016


Koga, Y., Miyazaki, H., Shibasaki, R., 2020. A method for vehicle detection in high-re-
solution satellite images that uses a region-based object detector and unsupervised
domain adaptation. Remote Sens. 12 (3), 575. https://doi.org/10.3390/rs12030575.

Koh, L.P., Wilcove, D.S., 2007. Cashing in palm oil for conservation. Nature 448 (7157),
993–994. https://doi.org/10.1038/448993a.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems,
pp. 1097–1105.

Kumar, A., Saha, A., Daume, H., 2010. Co-regularization based semi-supervised domain
adaptation. In: Advances in Neural Information Processing Systems, pp. 478–486.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444.
https://doi.org/10.1038/nature14539.

Li, W., Dong, R., Fu, H., Yu, L., 2019a. Large-scale oil palm tree detection from high-
resolution satellite images using two-stage convolutional neural networks. Remote
Sensing 11 (1), 11. https://doi.org/10.3390/rs11010011.

Li, W., Fu, H., Yu, L., Cracknell, A., 2017. Deep learning based oil palm tree detection and
counting for high-resolution remote sensing images. Remote Sens. 9 (1), 22. https://
doi.org/10.3390/rs9010022.

Li, Y., Wang, N., Shi, J., Liu, J., Hou, X., 2016a. Revisiting batch normalization for
practical domain adaptation. arXiv preprint arXiv:1603.04779.

Long, M., Cao, Y., Wang, J., Jordan, M.I., 2015. Learning transferable features with deep
adaptation networks. In: Proceedings of the 32nd International Conference on
International Conference on Machine Learning, vol. 37, pp. 97–105. JMLR. org.

Long, M., Zhu, H., Wang, J., Jordan, M.I., 2016. Unsupervised domain adaptation with
residual transfer networks. In: Advances in Neural Information Processing Systems,
pp. 136–144.

Li, W., He, C., Fang, J., Zheng, J., Fu, H., Yu, L., 2019b. Semantic segmentation-based
building footprint extraction using very high-resolution satellite images and multi-
source GIS data. Remote Sens. 11 (4), 403. https://doi.org/10.3390/rs11040403.

Ma, X., Mou, X., Wang, J., Liu, X., Wang, H., Yin, B., 2019. Cross-data set hyperspectral
image classification based on deep domain adaptation. IEEE Trans. Geosci. Remote
Sens. https://doi.org/10.1109/TGRS.2019.2931730.

Matasci, G., Tuia, D., Kanevski, M., 2012. SVM-based boosting of active learning strate-
gies for efficient domain adaptation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
5 (5), 1335–1343. https://doi.org/10.1109/JSTARS.2012.2202881.

Matasci, G., Volpi, M., Kanevski, M., Bruzzone, L., Tuia, D., 2015. Semisupervised transfer
component analysis for domain adaptation in remote sensing image classification.
IEEE Trans. Geosci. Remote Sens. 53 (7), 3550–3564. https://doi.org/10.1109/TGRS.
2014.2377785.

Mubin, N.A., Nadarajoo, E., Shafri, H.Z.M., Hamedianfar, A., 2019. Young and mature oil
palm tree detection and counting using convolutional neural network deep learning
method. Int. J. Remote Sens. 40 (19), 7500–7515. https://doi.org/10.1080/
01431161.2019.1569282.

Neupane, B., Horanont, T., Hung, N.D., 2019. Deep learning based banana plant detection
and counting using high-resolution red-green-blue (RGB) images collected from un-
manned aerial vehicle (UAV). PLoS ONE 14 (10). https://doi.org/10.1371/journal.
pone.0223906.

Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q., 2010. Domain adaptation via transfer com-
ponent analysis. IEEE Trans. Neural Networks 22 (2), 199–210. https://doi.org/10.
1109/TNN.2010.2091281.

Pan, X., Luo, P., Shi, J., Tang, X., 2018. Two at once: Enhancing learning and general-
ization capacities via ibn-net. In: Proceedings of the European Conference on
Computer Vision (ECCV), pp. 464–479.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al., 2019. PyTorch:
An imperative style, high-performance deep learning library. In: Advances in Neural
Information Processing Systems, pp. 8024–8035.

Pu, R., Landry, S., 2012. A comparative analysis of high spatial resolution IKONOS and
WorldView-2 imagery for mapping urban tree species. Remote Sens. Environ. 124,
516–533. https://doi.org/10.1016/j.rse.2012.06.011.

Quezada, J.C., Etter, A., Ghazoul, J., Buttler, A., Guillaume, T., 2019. Carbon neutral
expansion of oil palm plantations in the Neotropics. Sci. Adv. 5 (11), eaaw4418.
https://doi.org/10.1126/sciadv.aaw4418.

Rhys, T.H., Ken, L., Lee, H., 2018. Carbon sequestration in Malaysian oil palm plantations
– an overview. In: Proceedings of the 8th International Congress on Environmental
Geotechnics Volume 3: Towards a Sustainable Geoenvironment. Springer, pp. 49.

Samat, A., Gamba, P., Abuduwaili, J., Liu, S., Miao, Z., 2016. Geodesic flow kernel sup-
port vector machine for hyperspectral image classification by unsupervised subspace
feature transfer. Remote Sens. 8 (3), 234. https://doi.org/10.3390/rs8030234.

Senawi, R., Rahman, N.K., Mansor, N., Kuntom, A., 2019. Transformation of oil palm

independent smallholders through malaysian sustainable palm oil. J. Oil Palm Res.
31 (3), 496–507. https://doi.org/10.21894/jopr.2019.0038.

Sun, B., Saenko, K., 2016. Deep coral: correlation alignment for deep domain adaptation.
In: European conference on computer vision, pp. 443–450. https://doi.org/10.1007/
978-3-319-49409-8_35.

Tang, K.H.D., Al Qahtani, H.M., 2019. Sustainability of oil palm plantations in Malaysia.
Environ. Develop. Sustain. 1–25. https://doi.org/10.1007/s10668-019-00458-6.

Truckell, I.G., Shah, S.H., Baillie, I.C., Hallett, S.H., Sakrabani, R., 2019. Soil and trans-
port factors in potential distribution systems for biofertilisers derived from palm oil
mill residues in Malaysia. Comput. Electron. Agric. 166, 105005. https://doi.org/10.
1016/j.compag.2019.105005.

Tu, X., Zhao, J., Xie, M., Du, G., Zhang, H., Li, J., et al., 2019. Learning generalizable and
identity-discriminative representations for face anti-spoofing. arXiv preprint
arXiv:1901.05602.

Tuia, D., Persello, C., Bruzzone, L., 2016. Domain adaptation for the classification of
remote sensing data: an overview of recent advances. IEEE Geosci. Remote Sens. Mag.
4 (2), 41–57. https://doi.org/10.1109/MGRS.2016.2548504.

Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T., 2014. Deep domain confusion:
maximizing for domain invariance. arXiv preprint arXiv:1412.3474.

Tzeng, E., Hoffman, J., Darrell, T., Saenko, K., 2015. Simultaneous deep transfer across
domains and tasks. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 4068–4076.

Ulyanov, D., Vedaldi, A., Lempitsky, V., 2016. Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022.

Volpi, M., Camps-Valls, G., Tuia, D., 2015. Spectral alignment of multi-temporal cross-
sensor images with automated kernel canonical correlation analysis. ISPRS J.
Photogramm. Remote Sens. 107 (SEP.), 50–63. https://doi.org/10.1016/j.isprsjprs.
2015.02.005.

Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Tang, X., 2017. Residual at-
tention network for image classification. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3156–3164.

Wang, M., Deng, W., 2018. Deep visual domain adaptation: a survey. Neurocomputing
312, 135–153. https://doi.org/10.1016/j.neucom.2018.05.083.

Wang, X., Li, L., Ye, W., Long, M., & Wang, J., 2019a. Transferable attention for domain
adaptation. In: AAAI Conference on Artificial Intelligence (AAAI).

Wang, X., Jin, Y., Long, M., Wang, J., Jordan, M.I., 2019c. Transferable normalization:
towards improving transferability of deep neural networks. In: Advances in Neural
Information Processing Systems, pp. 1951–1961.

Wang, Y., Zhu, X., Wu, B., 2019b. Automatic detection of individual oil palm trees from
UAV images using HOG features and an SVM classifier. Int. J. Remote Sens. 40 (19),
7356–7370. https://doi.org/10.1080/01431161.2018.1513669.

Wu, H., Xu, Z., Wu, G., 2019. A novel method of missing road generation in city blocks
based on big mobile navigation trajectory data. ISPRS Int. J. Geo-Inf. 8 (3), 142.
https://doi.org/10.3390/ijgi8030142.

Wulder, M., Niemann, K.O., Goodenough, D.G., 2000. Local maximum filtering for the
extraction of tree locations and basal area from high spatial resolution imagery.
Remote Sens. Environ. 73 (1), 103–114. https://doi.org/10.1016/S0034-4257(00)
00101-2.

Yan, L., Fan, B., Xiang, S., Pan, C., 2018a. Adversarial domain adaptation with a domain
similarity discriminator for semantic segmentation of urban areas. In: 2018 25th IEEE
International Conference on Image Processing (ICIP). IEEE, pp. 1583–1587.

Yan, L., Zhu, R., Liu, Y., Mo, N., 2018b. TrAdaBoost based on improved particle swarm
optimization for cross-domain scene classification with limited samples. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 11 (9), 3235–3251. https://doi.org/10.1109/
JSTARS.2018.2859836.

Yan, L., Zhu, R., Mo, N., Liu, Y., 2019. Cross-domain distance metric learning framework
with limited target samples for scene classification of aerial images. IEEE Trans.
Geosci. Remote Sens. 57 (6), 3840–3857. https://doi.org/10.1109/TGRS.2018.
2888618.

You, K., Wang, X., Long, M., Jordan, M., 2019. Towards accurate model selection in deep
unsupervised domain adaptation. In: International Conference on Machine Learning,
pp. 7124–7133.

Zhu, R., Yan, L., Mo, N., Liu, Y., 2019. Semi-supervised center-based discriminative ad-
versarial learning for cross-domain scene-level land-cover classification of aerial
images. ISPRS J. Photogramm. Remote Sens. 155, 72–89. https://doi.org/10.1016/j.
isprsjprs.2019.07.001.

Zhuang, F., Cheng, X., Luo, P., Pan, S. J., He, Q., 2015. Supervised representation
learning: transfer learning with deep autoencoders. In: Twenty-Fourth International
Joint Conference on Artificial Intelligence.

J. Zheng, et al. ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 154–177

177

https://doi.org/10.3390/rs12030575
https://doi.org/10.1038/448993a
https://doi.org/10.1038/nature14539
https://doi.org/10.3390/rs11010011
https://doi.org/10.3390/rs9010022
https://doi.org/10.3390/rs9010022
https://doi.org/10.3390/rs11040403
https://doi.org/10.1109/TGRS.2019.2931730
https://doi.org/10.1109/JSTARS.2012.2202881
https://doi.org/10.1109/TGRS.2014.2377785
https://doi.org/10.1109/TGRS.2014.2377785
https://doi.org/10.1080/01431161.2019.1569282
https://doi.org/10.1080/01431161.2019.1569282
https://doi.org/10.1371/journal.pone.0223906
https://doi.org/10.1371/journal.pone.0223906
https://doi.org/10.1109/TNN.2010.2091281
https://doi.org/10.1109/TNN.2010.2091281
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0225
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0225
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0225
https://doi.org/10.1016/j.rse.2012.06.011
https://doi.org/10.1126/sciadv.aaw4418
https://doi.org/10.3390/rs8030234
https://doi.org/10.21894/jopr.2019.0038
https://doi.org/10.1007/978-3-319-49409-8_35
https://doi.org/10.1007/978-3-319-49409-8_35
https://doi.org/10.1007/s10668-019-00458-6
https://doi.org/10.1016/j.compag.2019.105005
https://doi.org/10.1016/j.compag.2019.105005
https://doi.org/10.1109/MGRS.2016.2548504
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0285
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0285
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0285
https://doi.org/10.1016/j.isprsjprs.2015.02.005
https://doi.org/10.1016/j.isprsjprs.2015.02.005
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0300
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0300
http://refhub.elsevier.com/S0924-2716(20)30183-0/h0300
https://doi.org/10.1016/j.neucom.2018.05.083
https://doi.org/10.1080/01431161.2018.1513669
https://doi.org/10.3390/ijgi8030142
https://doi.org/10.1016/S0034-4257(00)00101-2
https://doi.org/10.1016/S0034-4257(00)00101-2
https://doi.org/10.1109/JSTARS.2018.2859836
https://doi.org/10.1109/JSTARS.2018.2859836
https://doi.org/10.1109/TGRS.2018.2888618
https://doi.org/10.1109/TGRS.2018.2888618
https://doi.org/10.1016/j.isprsjprs.2019.07.001
https://doi.org/10.1016/j.isprsjprs.2019.07.001

	Cross-regional oil palm tree counting and detection via a multi-level attention domain adaptation network
	Introduction
	Related work
	Tree crown detection
	Domain adaptation

	Madan
	Overview of our proposed method
	BIN based feature extractor
	Adversarial learning based multi-level attention mechanism (MLA)
	Shallow feature based domain loss and feature level attention
	Deep feature based domain loss and entropy level attention

	Minimum entropy regularization (MER)
	IOU based post-processing

	Study area and datasets
	Experimental results
	Setup and evaluation metric
	Oil palm tree counting and detection results via MADAN
	Results comparison between MADAN and other DA approaches

	Discussion
	Ablation study of the BIN block
	Ablation study of the minimum entropy regularization
	Ablation study of the multi-level attention mechanism

	Conclusions
	Declaration of Competing Interest
	Acknowledgements
	The curve of training loss for all six transfer tasks and the accuracy of the validation dataset
	Detection results for MADAN and other DA methods in more regions
	References




