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A B S T R A C T   

For both the positive economic benefit and the negative ecological impact of the rapid expansion of oil palm 
plantations in tropical developing countries, it is significant to achieve accurate detection for oil palm trees in 
large-scale areas. Especially, growing status observation and smart oil palm plantation management enabled by 
such accurate detections would improve plantation planning, oil palm yield, and reduce manpower and con
sumption of fertilizer. Although existing studies have already reached a high accuracy in oil palm tree detection, 
rare attention has been paid to automated observation of each single oil palm tree’s growing status. Nowadays, 
with its high spatial resolution and low cost, Unmanned Aerial Vehicle (UAV) has become a promising tool for 
monitoring the growing status of individual oil palms. However, the accuracy is still a challenging issue because 
of the extreme imbalance and high similarity between different classes. In this paper, we propose a Multi-class 
Oil PAlm Detection approach (MOPAD) to reap both accurate detection of oil palm trees and accurate monitoring 
of their growing status. Based on Faster RCNN, MOPAD combines a Refined Pyramid Feature (RPF) module and a 
hybrid class-balanced loss module to achieve satisfying observation of the growing status for individual oil 
palms. The former takes advantage of multi-level features to distinguish similar classes and detect small oil 
palms, and the latter effectively resolves the problem of extremely imbalanced samples. Moreover, we elabo
rately analyze the distribution of different kinds of oil palms, and propose a practical workflow for detecting oil 
palm vacancy. We evaluate MOPAD using three large-scale UAV images photographed in two sites in Indonesia 
(denoted by Site 1 and Site 2), containing 363,877 oil palms of five categories: healthy palms, dead palms, 
mismanaged palms, smallish palms and yellowish palms. Our proposed MOPAD achieves an F1-score of 87.91% 
(Site 1) and 99.04% (Site 2) for overall oil palm tree detection, and outperforms other state-of-the-art object 
detection methods by a remarkable margin of 10.37–17.09% and 8.14%-21.32% with respect to the average F1- 
score for multi-class oil palm detection in Site 1 and Site 2, respectively. Our method demonstrates excellent 
potential for individual oil palm tree detection and observation of growing status from UAV images, leading to 
more precise and efficient management of oil palm plantations.   

1. Introduction 

In recent decades, oil palm plantations have expanded rapidly, 
particularly in the main oil palm producing countries such as Indonesia 

and Malaysia, which are currently two leading palm oil producers 
around the world (Quezada et al., 2019; Taheripour et al., 2019). 
Although oil palm promotes economic development and alleviates 
poverty for many tropical developing countries, the substitution of the 
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forest to oil palm plantation has become more and more widespread in 
recent years, resulting in a series of negative environmental impacts. 
The deforestation for oil palm cultivation has drawn attention to many 
governmental and non-governmental institutions because of its detri
mental effects on native survival species, tropical rain forests, and 
biodiversity, etc. (Koh, & Wilcove, 2007; Santika et al., 2017). 

Oil palm tree counting and detection not only benefit oil palm in
dustries and smallholders in yield prediction, irrigation and fertilization 
planning, and smart management, but also contributes to the protection 
of native species and ecological environment due to more reasonable oil 
palm plantation planning. However, only detecting the tree crown is not 
enough for smart oil palm plantation management (Li et al., 2017; 
Freudenberg et al., 2019; Santos et al.). Monitoring the growing status 
and disturbances (e.g., pest, disease, and mismanagement) of oil palm 
trees is crucial for both governments and industries (Shafri & Hamdan, 
2009; Shafri et al., 2011; Mubin et al. 2019). For example, farmers can 
replant dead palms, weed the fields to provide a better growing envi
ronment for mismanaged palms, and duly observe the health conditions 
of oil palms, preventing pests and diseases from spreading the whole 
plantation. In addition, the precise and appropriate management of oil 
palm plantation is not only conducive to the improvement of the palm 
oil production under limited plantation area, but also benefit to 
achieving the production goal without extensively expanding the plan
tation area. To this end, the observation of oil palm’s health conditions 
contributes to alleviating the expansion of oil palm and the threat to 
tropical forests and local species. 

During the last two decades, satellite remote sensing technique has 
been adopted in many kinds of applications for oil palm plantation 
monitoring and management (Chong et al., 2017), such as oil palm 
plantation mapping (Cheng et al., 2016; Dong et al., 2019a), oil palm 
tree detection (Li et al., 2017; Freudenberg et al., 2019), age, carbon and 
yield estimation (Kanniah et al., 2012; Balasundram et al., 2013; Tan 
et al., 2013; Cracknell et al., 2015), change detection (Pittman et al., 
2013; Cheng et al., 2019), and so on. Nowadays, with the rapid devel
opment of remote sensing techniques, it is potential to automatically and 
accurately detect oil palm trees from high-resolution remotely sensed 
images instead of time-consuming, labor-exhausting and costly manual 
work. 

In recent years, the Unmanned Aerial Vehicle (UAV) technique has 
demonstrated the potentials for more fine-grained recognition and 
analysis, owing to its high resolution, lightweight and low cost. UAV 
images have been widely applied to many domains (Colomina & Molina, 
2014; Wu et al., 2019; Jiang et al., 2020), including environment 
analysis (Bhardwaj et al., 2016; Tan et al., 2018; Zhu et al., 2019; Tu 
et al., 2020), precise agriculture (Zhou et al., 2017; Deng et al., 2018; 
Maimaitijiang et al., 2020; Bayraktar et al., 2020), forest monitoring 
(Liu et al., 2018; Hyyppä et al., 2020), wildlife protection (Rey et al., 
2017; Kellenberger et al., 2018; Kellenberger et al., 2019), etc. 
Furthermore, the UAV technique is also advantageous for tree and crop- 
related applications, such as tree crown delineation and detection 
(Wallace et al., 2014; Alexander et al., 2018; Osco et al., 2020), height 
estimation, biomass and volume estimation (Maimaitijiang et al., 2019; 
Fawcett et al., 2019; Ye et al., 2019), and disease detection (Dash et al., 
2017). 

Nevertheless, it is still very challenging to recognize and monitor the 
growing status of individual trees from UAV images. The reasons leading 
to this are manifold. First, the number of samples for abnormal trees (e. 
g., dead, mismanaged, or yellowish trees) are quite scarce compared 
with those of healthy trees, so that we cannot acquire enough prior 
knowledge to recognize them. Second, the appearance and character
istics of yellowish trees or mismanaged trees are incredibly similar to 
those of healthy trees, resulting in significant difficulties for dis
tinguishing these types. Third, although UAV images have very high 
spatial resolution, detecting smallish trees is still highly intractable. 
Although some recent studies roughly distinguished different health 
conditions (ranging from excellent to poor) of individual trees 

(Johansen et al., 2020), to the best of our knowledge, the multi-class 
monitoring of growing status for individual trees, i.e., dead, mis
managed, smallish, yellowish and healthy trees, has never been studied 
until now. 

In this study, we focus on accurately detecting the oil palm trees and 
distinguishing the multi-class growing status of oil palm trees using UAV 
images. We propose an individual oil palm tree detection method, which 
achieves high accuracy for not only oil palm tree detection, but also the 
multi-class monitoring of growing status for each oil palm with 
extremely imbalanced training samples. Our main contributions include 
the following three respects: 

(1) We collect a multi-class oil palm tree dataset from two UAV im
ages with areas of 28.85 km2 in total. The dataset includes nearly 
300,000 oil palms with five classes of growing status: dead oil 
palm, healthy oil palm, mismanaged oil palm, smallish oil palm, 
and yellowish oil palm. The datasets and our codes are available 
on https://github.com/rs-dl/MOPAD.  

(2) We solve the sample imbalance problem through a Class- 
Balanced Cross-Entropy Loss (CBCEL) and a Class-Balanced 
Smooth L1 Loss (CBSLL). CBCEL and CBSLL effectively re- 
weight the classification and regression loss modules according 
to the Effective Number (EN) for each class, which is able to 
attain notable accuracy increase on our multi-class oil palm 
detection dataset with extremely imbalanced samples.  

(3) We propose a multi-class, high-accuracy and real-time oil palm 
tree detection method for UAV images, named Multi-class Oil 
PAlm Detection (MOPAD). On the basis of Faster RCNN, we 
integrate a Refined Pyramid Feature (RPF) module and a hybrid 
class-balanced loss module to achieve satisfying multi-class 
monitoring of growing status for individual oil palms. Mean
while, we propose a practical workflow for detecting oil palm 
vacancy based on our detection results, which provides useful 
information for farmers or companies to replant the oil palms. 

The remainder of this paper is organized as follows. We introduce the 
related work for tree crown detection in the next section, and present 
our study area and dataset in Section 3. Following that, we introduce our 
proposed MOPAD in detail in Section 4, and compare the oil palm tree 
detection results of our MOPAD with other object detection approaches 
in Section 5. In Section 6, we introduce two smart management appli
cations for oil palm plantation, including multi-class oil palm tree dis
tribution analysis and detecting oil palm vacancies for replanting, 
followed by comprehensive discussions in Section 7. At last, we 
conclude our paper in Section 8. 

2. Related works 

Existing tree crown detection algorithm can be grouped into three 
types, including classical image processing methods (Wulder et al., 
2000; Pouliot et al., 2002; Ardila et al., 2012; Chemura et al., 2015; 
Gomes et al., 2018), traditional machine learning methods (Hung et al., 
2012; Pu and Landry, 2012; Dalponte et al., 2014; Wang et al., 2019a, 
2019b; Johansen et al., 2020), and deep learning methods (Li et al., 
2017; Csillik et al., 2018; Freudenberg et al., 2019; Osco et al., 2020; 
Puttemans et al., 2018; Xia et al., 2019). 

2.1. Classical tree crown detection 

The classical tree crown detection methods comprise of local 
maximum filter (Wulder et al., 2000; Pouliot et al., 2002; Vastaranta 
et al., 2012; Khosravipour et al., 2015; Wang et al., 2016; Li et al., 
2019b), template matching (Ke and Quackenbush, 2011; Murray et al., 
2019), image binarization (Pitkänen, 2001; Daliakopoulos et al., 2009) 
and image segmentation (Ferraz et al., 2016; Weinmann et al., 2016; Qin 
et al., 2014; Wagner et al., 2018; Aval et al., 2018), etc. Classical image 
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processing methods are designed by the characteristic of morphology for 
tree crowns (Gomes et al., 2018; Campbell et al., 2020). In most cases, 
these methods can be completed using existing tools or software (e.g., 
eCognition and ArcGIS) without time-consuming and labor-exhausting 
ground truths collections (except for the template matching method) 
(Ardila et al., 2012; Zhang et al., 2014; Mongus & Žalik, 2015). On the 
other hand, the detection performance of classical image processing 
methods deteriorates seriously where tree crowns are crowded or 
overlapping. Furthermore, it generally requires manual pre-selection of 
the suitable tree plantation areas before conducting the automatic 
detection of tree crowns. 

2.2. Traditional machine learning for tree crown detection 

Traditional machine learning for tree crown detection commonly 
requires two major procedures: (1) feature extraction, (2) classifier 
training and prediction. Feature extraction is the first step of traditional 
machine learning based tree crown detection methods, which is quite 
crucial for classifier training and prediction. According to literature re
view, feature extraction in traditional machine learning methods usually 
adopts some handcrafted approaches, such as PCA (Solano et al., 2019), 
HOG (Wang et al., 2019a, 2019b) and SIFT (Malek et al., 2014). The 
extracted features include a variety of types, such as spectral indexes 
(Johansen et al., 2020), shadow information (Özcan & Ünsalan, 2020) 
and height information (Windrim et al., 2020), etc. Most traditional 
machine learning methods require annotations and supervised classi
fiers for detecting tree crowns, including decision trees (Pu and Landry, 
2012; Yao and Wei, 2013), Random Forest (RF) (Blomley et al., 2017; 
Weinmann et al., 2017), Support Vector Machine (SVM) (Ardila et al., 
2011; Hung et al., 2012; Dalponte et al., 2014; Dai et al., 2018), and 
Artificial Neural Network (ANN) (Nevalainen et al., 2017), etc. Some 
researchers also adopt unsupervised machine learning algorithms (i.e., 
K-means) for individual tree detection (Ma et al., 2020). Compared with 
classical tree crown detection methods, traditional machine learning 
based tree crown methods make a great improvement in more complex 
study regions, with higher recall, precision, overall accuracy and F1- 
score. However, some feature extraction strategies are vastly compli
cated, and the machine learning classifiers (i.e., RF, SVM, etc.) have 
particular demands for image datasets, due to their limited capacity of 
generalization. 

2.3. Deep learning for tree crown detection 

Following the success of deep learning, many tree crown detection 
algorithms utilized convolutional neural network (CNN) to attain 
promising tree crown detection results in complex scenes and large 
study areas. Generally, existing deep learning based tree crown detec
tion approaches can be categorized into three types, i.e., CNN classifi
cation based method, semantic segmentation based method and object 
detection based method, which will be introduced as follows. 

2.3.1. CNN classification based methods for tree crown detection 
Most recent deep learning based tree crown detection methods adopt 

CNN classification based method combined with the sliding window 
technique (Dong et al., 2019b). They usually split the whole image into 
many image patches with specific window size and then classify them as 
the background or the tree crown through different CNN architectures, 
such as LeNet (Mubin et al., 2019), AlexNet (Li et al., 2017; Wu et al., 
2020b, Zheng et al., 2020), VGG (Li et al., 2019a), and ResNet (Guirado 
et al., 2017), etc. Although CNN classification based tree crown methods 
generally perform much better than classical image processing methods 
and traditional machine learning methods in regions with overlapping 
and crowded trees, they almost adopted the sliding window approach to 
complete final detection, which is a time-consuming technique because 
of the relatively large amount of detected candidates of various sizes. 
These methods are inefficient and not flexible for detecting trees of 

different crown sizes because the image patch size should be predefined 
according to our prior knowledge (Mubin et al., 2019). Additionally, the 
CNN classification based methods not only require the annotation of tree 
crown samples, but also requires extra annotation efforts for other types 
such as background, other vegetation, impervious, etc. 

2.3.2. Semantic segmentation based methods for tree crown detection 
Semantic segmentation based tree crown detection methods are end- 

to-end algorithms without requiring the time-consuming sliding window 
technique. Unlike the CNN classification based method (i.e., generate 
one label for one image patch), semantic segmentation aims to provide 
dense labels for the whole image. Some state-of-the-art semantic seg
mentation models, for example, U-Net (Freudenberg et al., 2019; Wag
ner et al., 2020; Zhang et al., 2020), DeepLab v3+ (Morales et al., 2018; 
Ferreira et al., 2020) and FCN (Xiao et al., 2020; Brandt et al., 2020), 
etc., have been adopted into tree crown detection and achieve remark
able results. Generally, the semantic segmentation based tree crown 
detection method is more efficient than the CNN classification based 
method because it allows the detection of several trees at once. It is 
suitable for tree species mapping that does not require tree counting 
tasks (Morales et al., 2018). On the contrary, the performance of se
mantic segmentation methods gets worse for areas containing trees that 
appear to overlap with each other, accounting for detecting several 
overlapping or touching trees as only one tree. Apart from that, the 
output of semantic segmentation methods is a “probability map” or a 
“confidence map”, indicating the probability that a pixel belongs to the 
tree crown type. These methods require a post-processing step to 
generate the final contours of individual trees, such as the local 
maximum detection (Freudenberg et al., 2019; Osco et al., 2020). 
Furthermore, the semantic segmentation based methods focus on tree 
crown detection and counting, which is difficult to obtain the exact tree 
crown size. To this end, for identifying individual tree crowns, semantic 
segmentation based methods are not the best choice. It is more suitable 
to explore the object detection based methods as described in Section 
2.3.3. 

2.3.3. Object detection based methods for tree crown detection 
In the past few decades, substantial object detection methods have 

been explored to detect various geospatial objects in the remote sensing 
community, including tree crown detection using high-resolution 
remotely sensed images (Li et al., 2020). A variety of end-to-end ob
ject detection methods have been applied to the tree crown detection 
field, such as YOLO v2/v3 (Puttemans et al., 2018; Itakura & Hosoi, 
2020), Faster R-CNN (Zheng et al., 2019), RetinaNet (Weinstein et al., 
2019, 2020; Selvaraj et al., 2020) and Mask R-CNN (Braga et al., 2020). 
Some researchers analyzed the accuracy and the efficiency of the above 
methods on tree crown detection (Santos et al., 2019; Xia et al., 2019), 
suggesting that two-stage object detection methods (i.e., Faster R-CNN, 
Mask R-CNN) often have better accuracy than one-stage object detection 
methods (i.e., YOLO v2/v3, RetinaNet), while one-stage algorithms 
greatly improve the tree crown detection speed. In general, the object 
detection based method is faster and more robust than other types of tree 
crown detection methods, efficiently alleviating the performance drop 
caused by complex topography, confusions with other vegetation, etc. 

Nowadays, deep learning based approaches have been the tendency 
for tree crown detection, which achieves promising and satisfying per
formance. However, existing tree crown detection studies have the 
following limitations. On the one hand, most of them focus on one-class 
tree detection without subcategory. Although some researchers have 
separately dealt with mature and young oil palms, the method required 
previously defined mature oil palm regions and young oil palm regions 
using different sliding window sizes (Mubin et al., 2019). On the other 
hand, existing pest or disease detection studies are limited to diseased 
tree mapping (Zhang et al., 2003; Shafri et al., 2011; Da Silva et al., 
2015; He et al., 2019), instead of precisely locating individual diseased 
tree. In addition, although some studies delve into recognizing disease 
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for individuals photographed by a multi-spectral sensor (Mahlein et al., 
2013; Giannakis et al., 2019), they focus on disease research rather than 
large-scale growing status monitoring for trees or crops. As far as we 
know, the monitoring of multi-class growing status for individual trees 
has never been studied before. 

3. Study area and datasets 

Fig. 1 shows our study area of two sites, i.e., Site 1 and Site 2, which 

are located in South Kalimantan (115◦2′15′′E, 3◦7′50′′S) (Site 1) and 
Papua (140◦29′17′′E, 6◦57′42′′S) (Site 2) in Indonesia. South Kalimantan 
locates in the middle of Indonesia, where oil palm expansion contributed 
3–12% of total Indonesian greenhouse gas emissions during 2000–2010 
(Carlson et al., 2013). Papua locates in the southwest of Indonesia, 
which possesses 2% of all oil palm plantations nationwide in 2015 and is 
regarded as a new leading oil palm development area in the future 
(Austin et al., 2017). Our images are acquired by UAV with three bands 
(RGB) and 10 cm spatial resolution for Site 1 and 8 cm for Site 2, 

Fig. 1. The study area and UAV images used in this paper. We photogragph UAV images in two sites (i.e., Site 1 and Site 2). Site 1 has one image and Site 2 has two 
images (i.e., Image A and Image B). For each site, we make a clear geographical separation of training regions, validation regions and test regions, which are denoted 
by by pink, white, and light blue rectangles, respectively. For the growing status of oil palms, we visualize the healthy, dead, mismanaged, smallish, and yellowish oil 
palms by green, red, deep blue, cyan and yellow boxes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 2. Examples of different types of oil palms, including healthy palms, dead palms, mismanaged palms, smallish palms and yellowish palms.  
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respectively. We photograph one image in Site 1 with the size of 40,000 
× 20,000 pixels (800 ha), and two images (i.e., Image A and Image B) in 
Site 2 with the sizes of 64, 273 × 27, 839 pixels (1145 ha) and 85,957 ×
31,976 pixels (1759 ha), respectively. There are various land cover types 
in our study area, such as oil palm plantations, rivers, buildings, other 
vegetation, etc. Our aerial platform is Skywalker X8 and the type of 
camera is Sony a6000. Skywalker X8 (as shown in Fig. A1) is a kind of 
First Person View (FPV) aircraft, with strong wind resistance to guar
antee the stability and efficiency of flying. The flight height is 500 m for 
acquiring Site 1 and 425 m for Site 2, and the cruise speed is about 
15–20 m/s. Other details about data collection information and camera 
specifications are listed in Table A1. 

In our study area, all 363,877 oil palms in two sites are manually 
annotated by experts. Each oil palm is annotated as one of five classes: 
dead palm, healthy palm, mismanaged palm, smallish palm and 
yellowish palm. As is shown in Fig. 2, healthy palms denote the palm 
that is normally cultivated. Dead palms no longer have vitality and 
usually have gray tree crowns. Mismanaged palms are generally sur
rounded by other vegetation (e.g., weeds or other trees) and have dif
ficulty obtaining sufficient soil nutrition and sunlight. Smallish palms 
mean the diameter of the palm crown is relatively smaller than healthy 
and mature oil palms. Some of them are under a seeding stage and others 
are under an abnormal growing stage. Yellowish palms often suffer from 
pests or disease and have yellow spots on their leaves in UAV images. We 
show some examples of these five classes of oil palms in Fig. 2, and 
provide more examples photographed from side view with a closer 
distance in Fig. A2. 

As shown in Fig. 1, we make a clear geographical separation of 

training regions, validation regions and test regions. Owing to different 
photograph acquisition conditions and environmental heterogeneity 
between Site 1 and Site 2, we separately train two models to validate oil 
palm tree detection algorithms. For Site 1, we train a model using one 
training region (denoted by the pink rectangle) and validate the model 
using two validation regions (denoted by white rectangles) during 
training procedures. We report the results of our model in the test region 
(denoted by the light blue rectangle) for Site 1. For Site 2, we train a 
model using three training regions (denoted by pink rectangles) in 
Image B and validate the model using the validation region (denoted by 
the white rectangle) in Image B during the training phase. We report our 
model’s overall accuracies in one test region in Image B and the whole 
area in Image A in Site 2 (denoted by light blue rectangles). 

We build the training datasets from the above training regions 
(denoted by pink rectangles in Fig. 1). First, we randomly split each 
training region into a certain number of images with 1024 × 1024 pixels 
(see in Section 5.4.1) as our training dataset. For Site 1, we split the 
training region into 3000 images, while for Site 2, we split each training 
regions in Image B into 1000 images. To this end, the training datasets of 
Site 1 and Site 2 both have 3000 images, all of which have at least two 
different oil palm classes. For the validation dataset, we generate 1000 
images from the validation regions in these two sites. For the test 
dataset, we adopt an overlapping partition approach for the test regions 
in Fig. 1 (see detailed information in Section 4.4). Tables 1 and A2 list 
the number of oil palms in each class for training, validation and test 
dataset in Site 1 and Site 2, respectively. We can easily observe that 
healthy palm has the highest quantity and the number distribution of 
five classes of oil palms is extremely imbalanced, resulting in enormous 
challenges for accurately detecting and distinguishing different classes 
of oil palms. Our datasets are available on https://github.com/rs 
-dl/MOPAD. 

4. Multi-class oil PAlm detection (MOPAD) 

In this section, we introduce our proposed method, i.e., Multi-class 
Oil PAlm Detection (MOPAD). Our method is inherited from Faster R- 
CNN (Ren et al., 2015). Fig. 3 shows the framework of our MOPAD, 
including a Refined Pyramid Feature module (RPF), a multi-level Region 
proposal network (RPN) and a hybrid class-balanced loss module. We 
summarized the three major modules of MOPAD as follows: 

Fig. 3. The flowchart of our proposed MOPAD. Our MOPAD contains three major modules: (a) A Refined Pyramid Feature (RPF) module for feature extraction, 
including four steps, i.e., rescaling, integration, refinement and disintegration. (b) A multi-level Region proposal network (RPN) for generating oil palm candidates. 
(c) A hybrid class-balanced loss module for improving multi-class oil palm detection, including a Class-Balanced Cross-Entropy Loss (CBCEL) and a Class-Balanced 
Smooth L1 Loss (CBSLL). 

Table 1 
The number of images for training, validation and test dataset in Site 1. The 
training, validation and test datasets are generated from the training, validation 
and test regions, respectively.  

Type Training dataset Validation dataset Test dataset 

Healthy palm 72,219 13,529 31,739 
Dead palm 266 59 382 
Mismanaged palm 319 81 83 
Smallish palm 11,185 14,051 13,074 
Yellowish palm 3005 768 2411 
Total 86,994 28,488 47,689  
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(1) A Refined Pyramid Feature (RPF) module for feature extraction. 
We integrate deep-level features and shallow level features to 
attain more feature characteristics from different level feature 
maps. Specifically, integrating high level and low-level feature 
maps contributes to distinguish similar classes and detect small
ish oil palms. Our RPF has four steps, including rescaling, inte
gration, refinement and disintegration.  

(2) A multi-level Region proposal network (RPN) for generating oil 
palm candidates. We adopt an end-to-end network to generate 
region proposals with a wide range of scales and an aspect ratio of 
{1 : 1} according to an oil palm tree crown’s shape. Following 
that, we adopt a Region of Interest (RoI) pooling layer to produce 
the fixed size of feature vectors for all region proposals.  

(3) A hybrid class-balanced loss module for improving multi-class oil 
palm detection. We firstly classify the region proposal as fore
ground (oil palm) or background and localize the oil palm using 
smooth L1 loss. Because the number of samples in different classes 
are extremely imbalanced, we adopt a Class-Balanced Cross-En
tropy Loss (CBCEL) and a Class-Balanced Smooth L1 Loss (CBSLL) 
to re-weight the multi-class classification and regression loss ac
cording to the number of samples in different classes. 

4.1. A Refined Pyramid Features (RPF) module 

As deep level features have more semantic meanings, many networks 
adopt deeper CNN to extract deeper information in images. However, 
shallow level features are more content descriptive and have more ca
pacity to detect small size objects. Recently, Feature Pyramid Network 
(FPN) (Lin et al., 2017) builds high-level semantic feature maps at 
different scales with lateral connections, achieving significant perfor
mance on various object detection tasks. Different from FPN, we focus 
on integrating deep level and shallow level features to realize comple
mentary feature extraction. 

Here, we select Residual Network (ResNet) (He et al., 2016) as our 
backbone. ResNet formulates the layers as learning residual modules 
with reference to the layer inputs, which addresses the saturated accu
racy and degradation problem caused by deeper networks. In ResNet, we 
can acquire four different scales of feature map as the upper right of 
Fig. 3 shows. For FPN, it makes predictions independently at all four 
scales. Our approach, inspired by Pang et al. (2019), integrates four- 
level features and strengthens the integrated feature by refining. 
Following, we introduce four steps of our RPF, including integration, 
refinement and disintegration. 

ResNet has four levels of feature maps. We denote feature maps at 
resolution level l as Fl and our multi-level feature maps can be denoted as 
{F1, F2, F3, F4}. Firstly, we rescale the multi-level feature maps into the 
same size. For example, if we select F2 as the intermediate feature map 
resolution, F3 and F4 are interpolated into the same size as F2, as well as 
F1 is max-pooled. Once the multi-level feature maps are resized, the 
integrated feature maps (FI) can be calculated as Eq. (1). 

FI =
1
N
∑lmax

lmin
Fl (1)  

where N is the number of multi-level feature maps. lmax and lmin are 
represented as the indexes of the highest and lowest resolution levels, 
respectively. Here, we obtain the integrated multi-level feature map. 

Inspired by the non-local module (Wang et al., 2018), we adopt an 
embedded Gaussian non-local module (denoted by Refinement) to make 
our integrated feature maps more discriminative. Finally, we use a 
reverse procedure to disintegrate and add the corresponding original 
feature maps to attain our refined pyramid feature maps 
{M1,M2,M3,M4}. Notably, each Mi has not only shallow level semantic 
features but also deep level semantic features. 

4.2. Multi-level region proposal network (RPN) 

Region proposal network (RPN) is the main contribution of Faster R- 
CNN (Ren et al., 2015), sharing full-image convolutional features with 
the detection network. In Faster R-CNN, RPN slides a dense n × n spatial 
window only over the last convolutional feature map. In our MOPAD, we 
adopt four levels of RPF (i.e., {M1,M2,M3,M4}) as the input convolu
tional feature maps, and attach the same spatial window to each level of 
our RPF. After that, we use two fully connected layers. One is the clas
sification layer and the other is the bounding box regression layer. 

In Faster R-CNN, the original default parameters of the anchor size 
are 

{
1282, 2562, 5122} and the aspect ratios are {1 : 2, 1 : 1, 2 : 1} for 

the last feature map of the Faster R-CNN. Instead, in our MOPAD, we 
assign an anchor size for each level of RPF. According to the size of oil 
palms in our image, we define the anchors to have areas of 

{
322,642,

1282,2562} pixels on {M1,M2,M3,M4}, respectively. As for the aspect 
ratio, we only assign {1 : 1} at each level considering the shape of an oil 
palm tree crown. In addition, our oil palm candidates generation method 
in multi-level RPN also accelerates the training and reference process 
because a smaller number of anchors are generated. 

4.3. A hybrid class-balanced loss module 

As our training samples are extremely imbalanced among different 
classes, directly adopting state-of-the-art object detection approaches 
may have embarrassing results. Many previous researches related to 
imbalance problems focus on data augmentation, such as geometrical 
transformations on images (horizontal flipping, multi-scale strategy, 
adding noises, etc.) (Ren et al., 2015; Liu et al., 2016), or using random 
occlusion mask on images or feature maps (Zhu et al., 2015; Wang et al., 
2017). However, these methods usually lead to an overfitting problem 
because of generating duplicated images. 

On the other hand, the imbalanced problem can also be addressed by 
re-weighting the loss with inverse class frequency or inverse square root 
of class frequency. Inspired by Cui et al. (2019), we adopt a Class- 
Balanced Cross-Entropy Loss (CBCEL) that embed an Effective Number 
(EN) for loss calculation instead of directly using the sample number. 
The EN of samples is the expected number of samples (Cui et al., 2019) 
and can be calculated as: 

EN =
1 − βnu

1 − β
(2)  

where nu is the amount of samples in the ground-truth class u and β is a 
hyperparameter (β ∈ [0,1)). It is noteworthy that β = 0 corresponds to 
the original loss function and β→1 means re-weighting through inverse 
class frequency. In other words, our CBCEL is reweighted by an inverse 
effective number. As the number of oil palm classes is 5, our predicted 
outputs from the classifier can be formulated as p = [p1, p2, p3, p4, p5]

T. 
Suppose a sample with the class label of y, the softmax cross-entropy 
(CE) loss for this sample can be formulated as: 

CEsoftmax(p, y) = − log

(
exp(pu)

∑C
i=1exp(pi)

)

(3)  

where C is the total volume of classes. Given class u with nu training 
samples, our CBCEL can be formulated as: 

CBCEL(p, u) = −
1 − β

1 − βnu
log

(
exp(pu)

∑C
i=1exp(pi)

)

(4) 

Moreover, we utilize a Class-Balanced Smooth L1 Loss (CBSLL) for 
our loss function for bounding box regression. Notably, the smooth L1 
Loss is the same as the original Faster RCNN. Our CBSLL can be defined 
as: 
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CBSLL(tu, v) =
1 − β

1 − βnu

∑

i∈{x,y,w,h}

smoothL1

(
tu
i − vi

)
(5) 

in which 

smoothL1 (x) =
{

0.5x2if |x| < 1
|x| − 0.5otherwise

(6)  

where tu =
(

tu
x , tu

y , tuw, tu
h

)
is a predicted tuple; v =

(
vx, vy, vw, vh

)
is a tuple 

of true bounding box regression targets for class u. Therefore, our multi- 
task loss function can be calculated as Eq. (7) and λ is a trade-off 
hyperparameter. 

L(p, u, tu, v) = CBCEL(p, u)+ λ*CBSLL(tu, v) (7)  

4.4. Large-scale oil palm tree detection 

We adopt MOPAD to predict the oil palm tree crown using three 
large-scale test regions in Site 1 and Site 2. As we trained our model 
using sub-images of 1024 × 1024 pixels (see in Section 5.4.1), we 
needed to crop the large-scale image into small patches to implement the 
large-scale image prediction (Peng et al., 2020). If we directly crop the 
large-scale image uniformly into small patches of 1024 × 1024 pixels 
without overlaps, some tree crowns will be separated into two different 
patches, in which case the tree crown might not be detected or the 
detected object is incomplete. To solve this problem, we adopt an 
overlapping partition approach for large-scale UAV image prediction 
instead of directly splitting into several 1024 × 1024 sub-images, along 
with every two neighbor patches in the large-scale image has an over
lapping width (height) with 200 pixels to ensure corners are not over
looked by the CNN model. In this way, all the detected trees belong to at 
least one patch. After the oil palm tree detection of each patch, we 
perform an Intersection-of-Union (IoU) based merging operation to 

acquire final detection results. This not only solves the problem of 
misdetection and wrong detection in the large-scale image detection 
process, but also avoids duplicate detection of targets. In addition, we 
consider the detected healthy palms whose crown sizes are less than 50 
× 50 pixels as smallish palms for Site 1 and 80 × 80 pixels for Site 2. 

5. Experimental results of multi-class oil palm tree detection 

In this section, we evaluate the experimental results of our proposed 
MOPAD for multi-class oil palm tree detection. First, we introduce the 
experimental setup and our evaluation metric in Section 5.1. Then we 
describe the multi-class oil palm tree detection results of MOPAD in 
Section 5.2, followed by substantial ablation studies and comparison 
with other state-of-the-art object detection methods in Section 5.3 and 
Section 5.4, respectively. 

5.1. Setup and evaluation 

We complement our experiments based on the MMdetection deep 
learning framework (Chen et al., 2019), and we set the hyperparameter λ 
(introduced in Eq. (7)) as 1 throughout all our experiments (Ren et al., 
2015). We train our model on GeForce RTX 2080 Ti. Moreover, we 
choose Stochastic Gradient Descent (SGD) (Bottou, 2010) as our opti
mizer with a momentum strategy and the number of training epoch is 
24. The backbone of MOPAD and other popular object detection 
methods is ResNet-101 (see Fig. C1 and Section 5.4.1) for a fair com
parison. We discuss the effect of the depth of backbone in Section 5.4.1. 
The hyperparameter of β (introduced in Eq. (2)) is equal to 0.9999 in our 
experiments and we analyze the reason in Section 5.4.3. Our codes are 
available on https://github.com/rs-dl/MOPAD. 

Our evaluation metric consists of precision, recall and F1-score, 
which are calculated following previous studies (Li et al., 2019a, 
2019b; Zheng et al., 2020). Precision depicts the model’s capability to 

Fig. 4. Failure cases for FP and FN of oil palm detection in test regions in Site 1.  

Table 2 
The detection results of our proposed MOPAD for the test region in Site 1.  

Index Oil palm Healthy palm Dead palm Mismanaged palm Smallish palm Yellowish palm 

TP 39,973 27,047 170 44 10,071 2063 
FP 3280 594 63 43 2992 166 
FN 7716 4692 212 39 3003 348 
Precision 92.42% 97.85% 72.96% 50.57% 77.10% 92.55% 
Recall 83.82% 85.22% 44.50% 53.01% 77.03% 85.57% 
F1-score 87.91% 91.10% 55.28% 51.76% 77.06% 88.92%  
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detect oil palms correctly, while recall describes the model’s capability 
to detect ground-truth oil palms. F1-score evaluates the overall perfor
mance of the model. The above metric can be calculated from True 
Positives (TP), False Positives (FP) and False Negatives (FN). TP denotes 
the number of oil palms detected correctly; FP denotes the number of 
others detected as oil palms by mistake; FN denotes the number of 
ground-truth oil palms missing in detection results. When the IOU 
metric value between the detected palm and an annotated oil palm tree 
is equal to or greater than 0.5, the oil palm tree will be regarded as a 
correctly detected object. 

5.2. Multi-class oil PAlm tree detection (MOPAD) results 

Tables 2 and B1 list the detection results of our proposed MOPAD for 
the test regions in Site 1 and Site 2, with respect to TP, FP, FN, precision, 
recall and F1-score. The F1-scores of oil palm tree detection are 87.91% 
and 99.04%, with precisions of 92.42% and 98.90%, and recalls of 
83.82% and 99.19%. The oil palm tree detection performance of Site 2 is 
much better than Site 1, with over 11% increment of F1-score. The 
possible reason is that the images for Site 2 have much higher quality, 
and the local oil palm plantation possesses better management with a 
unified planting pattern so that there are fewer confusions between oil 
palm trees and background, such as other vegetation. Figs. 4 and B1 
display some examples of FP and FN for Site 1 and Site 2, respectively. 
We can observe that other vegetation and tree shadows can be detected 
as oil palm trees by mistake (in the left of Figs. 4 and B1). On the other 

hand, FN mainly results from sheltering by other vegetation, the small 
size of oil palm tree crown, and the low quality of UAV images (in the 
right of Figs. 4 and B1). 

As for multi-class oil palm tree detection results, the average F1- 
scores for the five classes are 72.83% and 70.57% for the test regions 
in Site 1 (in Table 2) and Site 2 (in Table B1), respectively. The per
formance of multi-class oil palm tree detection for Site 1 is slightly better 
than Site 2, with a 2.16% gain of F1-score. We can observe that the 
healthy palm, which has the largest sample number among five classes, 
reaches the highest F1-score of 91% for Site 1, and over 99% for Site 2, 
while the mismanaged palm and the dead palm has relatively lower F1- 
scores, with 55.28% and 51.76% for Site 1 and 43.24% and 44.59% for 
Site 2. Tables 3 and B2 show the confusion matrix for multi-class oil 
palm tree detection of our proposed MOPAD for Site 1 and Site 2, 
respectively, in which the top row denotes the ground truth types and 
the left column denotes the predicted types. The mismanaged palm and 
yellowish palm have serious confusion with healthy palm because of 
their high similarity. We also display some examples of confusion be
tween different classes in Fig. 5 for Site 1 (on the left) and Site 2 (on the 
right). 

5.3. Results comparison between our method and other state-of-the-art 
object detection methods 

We compare our method with two traditional machine learning 
based methods (i.e., RF and SVM), CNN classification based method (i. 
e., ResNet-101) and other five state-of-the-art object detection methods, 
including Faster R-CNN (Ren et al., 2015), Cascade R-CNN (Cai and 
Vasconcelos, 2018), Guided Anchoring (GA) Faster R-CNN (Wang et al., 
2019a), Libra Faster R-CNN (Pang et al., 2019) and Grid R-CNN (Lu 
et al., 2019). RF and SVM are two prevalent machine learning methods, 
which have been applied in numerous tree detection studies (Dai et al., 
2018; Johansen et al., 2020). For the CNN classification based method, 
we adopt the same backbone (i.e., ResNet-101) as our MOPAD, and the 
sliding window technique. Appendix C introduces the detailed workflow 
for the CNN classification based multi-class oil palm tree detection al
gorithm. Note that we employ the same post-processing procedures for 
both traditional machine learning methods and CNN classification based 
method. As for object detection based tree crown detection method, 
Faster R-CNN is a basic object detection method for MOPAD, and has 

Fig. 5. Failure cases of confusions among different kinds of oil palms for Site 1 (left) and Site 2 (right), in which the top row denote the ground truth types and the 
left column denote the predicted types. 

Table 3 
The confusion matrix for multi-class oil palm detection of our proposed MOPAD 
in Site 1, in which the top row denotes the ground truth types and the left column 
denote the predicted types.  

Index Healthy 
palm 

Dead 
palm 

Mismanaged 
palm 

Smallish 
palm 

Yellowish 
palm 

Healthy palm 27,047 3 6 364 15 
Dead palm 12 170 0 15 2 
Mismanaged 

palm 
1 1 44 6 0 

Smallish palm 0 16 0 10,071 10 
Yellowish 

palm 
112 1 0 14 2063  
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been employed in several tree crown detection studies (Santos et al. 
2019; Xia et al., 2019; Zheng et al., 2019). Cascade R-CNN consists of a 
sequence of detectors to avoid problems of overfitting at training pro
cedures. GA Faster R-CNN leverages semantic features to guide the 
arbitrary anchor selection rather than using dense and predefined an
chors in RPN introduced in Section 4.2. Libra Faster R-CNN integrates 
IoU-balanced sampling, balanced feature pyramid and balanced L1 loss 
for reducing the imbalance at different levels, which is possibly appro
priate in our task with the imbalanced issue. Grid R-CNN captures the 
spatial information explicitly with a feature fusion module to achieve 
accurate object detection performance. 

We list the test regions’ results in Site 1 and Site 2 in Tables 4 and B3. 
Our proposed MOPAD achieves the highest F1-score for all oil palm 
classes except healthy oil palm and mismanaged oil palm in Site 1 (lower 
than Cascade R-CNN and Libra Faster R-CNN, respectively). In general, 
the performance of multi-class oil palm tree detection through object 
detection based methods are much better than traditional machine 
learning based methods (i.e., RF and SVM) (with at least 29.76% and 
23.20% improvement for Site 1 and Site 2, respectively) and CNN 

classification based method (with at least 27.71% and 20.45% 
improvement for Site 1 and Site 2, respectively). We can observe that our 
method has remarkably higher multi-class oil palm detection accuracy 
and fewer confusions among different kinds of oil palms, with im
provements of 10.37%-17.09% and 8.14%-21.32% in respect of average 
F1-score for Site 1 and Site 2, respectively. Faster R-CNN exhibits 
diminished performance with an average F1-score of 55.74% and 
49.25%. Grid R-CNN, Cascade R-CNN, Libra Faster R-CNN and GA Faster 
R-CNN perform similarly in Site 2, achieving considerable improve
ments compared to Faster R-CNN with 6%-13.18% improvement. On the 
other hand, in Site 1, these methods attain limited accuracy gains with 
0.49–6.72% improvement. As for our proposed MOPAD, it substantially 
ameliorates the average F1-score of multi-class growing status classifi
cation by 17.09%, compared to Faster R-CNN under extremely imbal
anced samples in Site 1. Figs. 6–9 show the detection results of the CNN 
classification based method, the above five object detection based 
methods and our MOPAD, which indicate the superior results of MOPAD 
compared with other state-of-the-art methods. The green, red, blue, cyan 
and yellow rectangles represent healthy, dead, mismanaged, smallish 

Fig. 6. Multi-class oil palm tree detection results for Region 1 in Site 1. The black circles denote some examples where our MOPAD outperforms other tree crown 
detection methods. 

Table 4 
The F1-score of other state-of-the-art tree crown detection methods in Site 1.  

Method Healthy palm Dead palm Mismanaged palm Smallish palm Yellowish palm Average F1-score 

RF 79.05% 0.46% 0.00% 37.50% 12.91% 25.98% 
SVM 77.47% 0.00% 0.00% 33.45% 5.03% 23.19% 
CNN (ResNet-101) 74.76% 7.33% 2.86% 35.93% 19.26% 28.03% 
Faster R-CNN 90.46% 6.47% 42.48% 65.76% 73.54% 55.74% 
Grid R-CNN 90.62% 13.37% 41.82% 66.14% 69.22% 56.23% 
GA Faster R-CNN 88.60% 15.67% 54.70% 61.52% 71.18% 58.33% 
Cascade R-CNN 91.22% 36.36% 40.00% 64.48% 71.46% 60.71% 
Libra Faster R-CNN 91.00% 30.54% 55.74% 65.17% 69.87% 62.46% 
MOPAD (ours) 91.10% 55.28% 51.76% 77.06% 88.92% 72.83%  
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and yellowish palms. The black circles denote some examples where our 
MOPAD outperforms other tree crown detection methods. We can easily 
observe that MOPAD performs better on classes with lower samples, 
such as dead palms (Figs. 6 and 7), mismanaged palms (Fig. 8) and 
yellowish palms (Fig. 9). The improved performance for smallish palms 
is displayed in Fig. 10 (see in Section 5.4.2). More detection results and 
comparisons can be found in Figs. D1–D6 in Appendix D. 

5.4. Ablation studies for our proposed MOPAD 

In this part, we first assess the effect of the CNN layer’s depth and the 
input image’s size in Section 5.4.1. Then, extensive ablation studies are 
conducted to validate the Refined Pyramid Feature (RPF) in Section 
5.4.2 and the hybrid class-balanced loss module, including the Class- 
Balanced Cross-Entropy Loss (CBCEL) and the Class-Balanced Smooth 
L1 Loss (CBSLL) in Section 5.4.3. These experiments demonstrate the 
contributions of different components and provide more insights into 
our proposed MOPAD. Note that we take the test regions in Site 2 (the 
whole area in Image A and one test region in Image B, see Fig. 1) as an 
example in our following ablation studies. 

5.4.1. Ablation study for the depth of CNN layer, the size of input images 
and the anchor generation 

Table 5 shows the performance of different depths of ResNet, 
including 18, 34, 50, 101 and 152 layers. Experimental results present 
that ResNet-101 has the highest average F1-score of 70.57% for multi- 
class oil palm detection and the highest F1-score for healthy palms, 
smallish palms and yellowish palms. ResNet-50 reaches the highest ac
curacy for dead palms and mismanaged palms. In conclusion, we select 
ResNet-101 as the backbone of our proposed MOPAD. We further 
explore the optimal size of the input sub-image. The results of different 
input sizes are shown in Fig. B2. Not that we adopt the same input size of 

sub-image in both the training and test phase. When the input size is 512 
× 512 pixels or 1024 × 1024 pixels, the model performs around 70% of 
the average F1-score, while a larger input image size of 2048 × 2048 
pixels leads to a worse detection performance, especially for dead palms, 
which has the least amount of samples. Considering both the detection 
accuracy and the inference efficiency, we use 1024 × 1024 pixels as the 
image size in this study. As for the anchor generation, we conduct the 
ablation experiments about different anchor-sizes and aspect-ratios, 
which is displayed in Table B4. Although the ratios of {1 : 2, 1 : 1,2 :

1} (the third row in Table B4) performs slightly better than our ratios of 
{1 : 1} (the fourth row in Table B4) under our scale setting 
(
{
322, 642, 1282, 2562}), we keep our ratio setting as {1:1} because it is 

more suitable and reasonable according to the circle shape of the oil 
palm tree crown. In addition, it also accelerates the training and refer
ence process because a smaller number of anchors are generated. We can 
also find that our scale setting of 

{
322, 642, 1282, 2562} can further 

improve the average accuracies compared with using 
{
1282,2562,5122}. 

5.4.2. Ablation study for the Refined Pyramid feature (RPF) 
We show the ablation studies of RPF in Table 6. We first implement 

RPF only with integration. We can observe that although the naïve 
feature integration only obtains a 1.52% higher average F1-score than 
the corresponding baseline (i.e., Faster R-CNN with FPN), the F1-score 
of smallish palm attains 12.03% gains compared to the pure Faster R- 
CNN. It is noteworthy that there is no refinement or parameter added in 
this method. Only with this simple procedure, each resolution level 
obtains equal information from other level feature maps. After embed
ding the convolutional attention or Gaussian non-local attention (Wang 
et al., 2018), RPF can further improve the final results. Our RPF is able to 
obtain a 5.37% performance gain in terms of average F1-score for multi- 

Fig. 7. Multi-class oil palm tree detection results for Region 2 in Site 1. The black circles denote some examples where our MOPAD outperforms other tree crown 
detection methods. 
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class oil palm tree detection using Gaussian non-local attention. It is 
worth noting that our RPF achieves a considerable improvement of 
13.99% for smallish palms compared with Baseline (Faster R-CNN with 
FPN), demonstrating that RPF efficiently integrates multi-scale features 
for correctly detecting smaller trees. The performance of detecting 
smallish oil palms of these methods are illustrated in Fig. 10. We can find 
that the Baseline method misses most smallish palms. Leveraging Inte
gration and Conv-based Refinement can improve the detection results 
for smallish palms to some extent. Based on the non-local based 
refinement (our RPF), smallish palms are more accurately detected than 
the above methods. 

5.4.3. Ablation study for the hybrid class-balanced loss module 
As listed in Table 7, we verify the effectiveness of CBCEL and CBSLL 

separately, which gains 12.04% and 5.21% improvement for multi-class 
oil palm tree detection with respect to average F1-score compared to 
Faster R-CNN, and 13.68% and 5.99% for Faster R-CNN + RPF. 
Furthermore, combining CBCEL and CBSLL can make a better 
improvement of 13.97% for Faster R-CNN and 15.95% for Faster R-CNN 
+ RPF. The increment of our hybrid class-balanced loss module for 
Faster R-CNN + RPF is higher than that for Faster R-CNN. The reason 
may be that RPF not only helps to detect smallish palms, but also pro
mote to distinguish similar classes because of fusing different level 
features. Our hybrid class-balance loss module can effectively increase 
the detection accuracy by a large margin for low-number palm classes 
like dead palms (+29.29% and + 32.65%), mismanaged palms 
(+22.69% and + 21.49%) and yellowish palms (+23.84% and +
26.04%) on the basis of Faster R-CNN and Faster R-CNN + RPF, 
respectively. Additionally, the performance of healthy palms also has a 
slight increase for Faster R-CNN + RPF, with the possible reason that our 
hybrid class-balanced loss module alleviates the overfitting phenome
non. Although the hybrid class-balanced loss module has a relatively 

lower performance for smallish palms, it still helps to achieve a favor
able improvement for the average F1-score of five oil palm classes. 

Next, we further analyze the hyper-parameter β, which controls how 
fast the Effective Number (EN) grows as the number of samples increases 
(Cui et al., 2019). According to Eq. (2), we display the F1-scores for 
multi-class oil palm detection under different β =

{0.9,0.99,0.999,0.9999,0.99999,0.999999}. If β is closing to 1, the 
weights in the loss module for the class with a low number of samples 
become larger. Fig. 11 displays the performance of multi-class oil palm 
detection under different β. It is observed that as β increases, the accu
racy of healthy palms consistently increases when β ≤ 0.999 because of 
alleviating the overfitting phenomenon, while it can negatively affect 
the detection accuracy for smallish palms when β ≥ 0.9999. For low- 
number oil palm classes, mismanaged palms and dead palms achieve 
the highest F1-score when β = 0.999 and yellowish palms reach the best 
performance when β = 0.99999. In conclusion, we select β = 0.9999 for 
our MOPAD to obtain the highest average F1-score for multi-class oil 
palm tree detection. 

6. Experimental results of smart oil palm plantation 
management 

In this section, we take Image A in Site 2 as an example to introduce 
the experimental results of two practical applications for smart oil palm 
plantation management based on the detection results of our proposed 
MOPAD. Smart oil palm plantation management benefits oil palm 
companies and smallholders for reasonable plantation planning, oil 
palm yield improvement and saving labor or fertilizer. We first intro
duce the distribution of oil palms in our study area in Section 6.1, and 
introduce how to detect the vacancies for oil palm replanting in Section 
6.2. 

Fig. 8. Multi-class oil palm tree detection results for Region 1 in Site 2. The black circles denote some examples where our MOPAD outperforms other tree crown 
detection methods. 
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Fig. 9. Multi-class oil palm tree detection results for Region 2 in Site 2. The black circles denote some examples where our MOPAD outperforms other tree crown 
detection methods. 

Fig. 10. Comparison of smallish oil palm detection results using different strategies. The black circles denote some examples where our Refinement (non-local) 
outperforms other methods. 
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6.1. The distribution of oil palms in our research area 

In our whole Image A, a number of 169,374 oil palm trees are 
detected using MOPAD. Our proposed MOPAD achieves the overall oil 
palm tree detection F1-score of 99.43%, which is a relatively satisfying 
result. The total inference time for oil palm detection in the whole UAV 
image is less than 15 min. By calculating the volume of detected oil 
palms per hectare for each pixel, we obtain the distribution map of our 
study area, as shown in Fig. 12. The map is consistent with the actual 
plantation distribution of the oil palms, clearly indicating the non-oil 
palm plantation areas, such as buildings, roads or other vegetation. 

We also map the distribution of healthy palms and smallish palms in 

Figs. 13 and 14, respectively. As the percentage of detected healthy 
palms is more than 99% (see Tabel C3), the distribution of healthy palms 
is similar to the one of all oil palms. We can find two cases from the 
distribution of smallish palms. The first case is that smallish palms are 
aggregating together, indicating they are under a seeding stage and 
planted at a later time. The second case is that the discrete smallish 
palms may be under abnormal growth stage because their growing 
conditions are not as well as others that were planted at the same time, 
which are supposed to be taken special care and inspection. 

For dead palms, mismanaged palms and yellowish palms, we locate 
the exact position of each tree in Fig. 15. The red and blue points show 
the locations of dead oil palms and mismanaged oil palms that we 

Fig. 11. The F1-score of multi-class oil palm detection under different β.  

Table 7 
The F1-scores of ablation study of the hybrid class-balanced loss module.  

Method Healthy palm Dead palm Mismanaged palm Smallish palm Yellowish palm Average F1-score 

Faster R-CNN 98.58% 7.94% 17.46% 78.25% 44.01% 49.25% 
+ CBCEL 98.37% 40.68% 37.57% 75.39% 54.43% 61.29% 
+ CBSLL 98.10% 23.94% 26.44% 75.59% 48.23% 54.46% 
+CBCEL + CBSLL 98.54% 37.23% 40.15% 72.35% 67.85% 63.22% 
Faster R-CNN + RPF 97.11% 10.59% 23.10% 92.24% 50.00% 54.62% 
+ CBCEL 98.08% 42.22% 41.25% 88.09% 71.86% 68.30% 
+ CBSLL 98.12% 20.79% 34.68% 86.16% 63.28% 60.61% 
+CBCEL + CBSLL(MOPAD) 99.43% 43.24% 44.59% 89.55% 76.04% 70.57%  

Table 5 
The F1-score of different depth of ResNet for our MOPAD.  

Method Healthy palm Dead palm Mismanaged palm Smallish palm Yellowish palm Average F1-score 

ResNet-18 97.14% 27.05% 35.18% 80.51% 66.69% 61.31% 
ResNet-34 97.49% 44.59% 43.33% 83.64% 53.74% 64.56% 
ResNet-50 98.18% 57.38% 46.32% 85.87% 48.78% 68.19% 
ResNet-101 99.43% 43.24% 44.59% 89.55% 76.04% 70.57% 
ResNet-152 97.22% 40.80% 43.12% 86.64% 65.92% 66.74%  

Table 6 
The F1-score of ablation study of RPF.  

Method Healthy palm Dead palm Mismanaged palm Smallish palm Yellowish palm Average F1-score 

Faster R-CNN 98.58% 7.94% 17.46% 78.25% 44.01% 49.25% 
+ Integration 98.61% 9.33% 17.93% 90.28% 37.68% 50.77% 
+ Refinement (conv) 97.99% 8.70% 21.29% 91.51% 51.68% 54.23% 
+ Refinement (non-local) (RPF) 97.19% 10.59% 23.10% 92.24% 50.00% 54.62%  

J. Zheng et al.                                                                                                                                                                                                                                   



ISPRS Journal of Photogrammetry and Remote Sensing 173 (2021) 95–121

108

detected, respectively. It is practical for oil palm smallholders and in
dustries to monitor the growth of these trees and take some actions in 
time. For example, farmers can conveniently and efficiently find the 
dead palms and the mismanaged palms, so that they can replant them or 
weed the fields to make better management. In addition, through ac
curate detection of yellowish oil palm trees (denoted by yellow points in 
Fig. 15), oil palm industries can duly observe the health conditions of oil 
palms and treat pests and diseases to prevent spreading the whole 
plantation. 

6.2. Detecting vacancies for oil palm replanting 

Finding oil palm vacancies can effectively help farmers to replant the 
oil palm, increasing the harvest field and taking full advantage of the oil 
palm plantation area. Our proposed method for seeking vacancies of oil 
palms is shown in Figure 17. Firstly, we attain the detection results from 
the proposed MOPAD algorithm, and we split the whole UAV images by 
1024 × 1024 pixels with a particular overlap area. Secondly, we select 
the split areas that have detected palms over N in order to remove re
gions with buildings, roads, other trees that have a low number of palms. 
Then we generate oil palm masks for our selected areas, which can be 
shown in the middle of Fig. 16. The white area denotes the oil palm area, 

Fig. 14. The distribution of detected smallish oil palms using MOPAD.  

Fig. 12. The distribution of all oil palms using MOPAD.  

Fig. 13. The distribution of detected healthy oil palms using MOPAD.  
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while the black area denotes the non-oil palm area. Following that, 
candidate vacancies are acquired by sliding window technique with a 
size of W × W. Finally, we merge the candidate vacancies to ensure that 
the distance between the center of two oil palm vacancies is more than 
D. In our experiments, N, W and D are set as 60, 80 and 120, respec
tively. Fig. 17 displays some vacancy detection results, in which the left 
shows examples of correctly detected vacancies and the right shows 
examples of vacancy detection mistakes. Because our vacancy detection 
method depends on the detection results of MOPAD, some false positives 
or false negatives of MOPAD may result in mistakes of vacancy 
detection. 

7. Discussion 

In the following, we first analyze the transferability of our proposed 
MOPAD for tree crown detection in Section 7.1. And then, we discuss the 
practical effect of growing status observation for oil palm plantation 
based on our MOPAD in Section 7.2 and envision the potential future 
works in Section 7.3. 

7.1. The transferability of our proposed MOPAD for tree crown detection 

In this section, we analyze the transferability of the tree crown 
detection model. In the experiment, we have two transfer tasks. The first 
one is that we train the MOPAD with training samples from Site 1 and 
test it on Site 2. The other one is that we train the MOPAD with training 
samples from Site 2 and test it on Site 1. For comparative purposes, we 
also present the result trained with samples from both Site 1 and Site 2, 
and test it on Site 1 and Site 2, respectively. Note that we resample UAV 
images in Site 2 to 10 cm, which is consistent with the spatial resolution 
of the UAV image in Site 1. Fig. 18 presents the transfer matrices of F1- 
score for five classes (i.e., Healthy palm, dead palm, mismanaged palm, 
smallish palm and yellowish palm) and their average. The site names in 
the left of each matric denote the source domain (training dataset), and 
the site names below each matric denote the target domain (test data
set). For the average F1-score, the model trained on Site 1, Site 2 and Site 
1 & 2 achieves 72.83%, 59.50% and 63.15% when test on Site 1 while 
achieves 57.83%, 70.57% and 62.79% when test on Site 2. We can easily 
observe that the best detection results for both Site 1 and Site 2 are 
obtained from training on their own. In addition, the model trained with 

Fig. 15. The location of detected dead oil palms (denoted by red points), mismanaged oil palms (denoted by blue points) and yellowish oil palms (denoted by yellow 
points) using MOPAD. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 16. Our method of finding vacancy of oil palms.  

J. Zheng et al.                                                                                                                                                                                                                                   



ISPRS Journal of Photogrammetry and Remote Sensing 173 (2021) 95–121

110

samples from Site 1 & 2 also performs worse than the model trained with 
samples from their own regions. 

Due to the domain shift issue (Tuia et al., 2016; Liu and Shi, 2020) in 
which each domain has its own environment and features, it is chal
lenging to apply the model without any transferable trick to another 
domain, resulting in an unavoidable deterioration of the model perfor
mance. Although the topic of domain adaptation has been explored in 
recent years, limited studies were conducted to tackle the domain shift 
problem in cross-regional or cross-temporal tree crown detection (Wu 
et al., 2020c; Zheng et al., 2020; Wu et al., 2020b). In the future, we will 
explore and develop more advanced methods for cross-instrument, 
cross-regional or cross-temporal tree crown detection problem. 

7.2. The practical effect of growing status obsevation for oil palm 
plantation based on our MOPAD 

The oil palm tree is a crucial economic crop in many tropical 
developing countries and palm oil is one of the most important agri
cultural export products for Malaysia and Indonesia. The yield of palm 
oil is highly related to the growing status of oil palm plantations. On the 
one hand, it is beneficial for oil palm industries and smallholders to 
understand the health conditions of the oil palm trees in advance, 
enabling them to better manage the plantation and take action in time. 
On the other hand, the precise and appropriate management of oil palm 
plantation is not only conducive to the improvement of the palm oil 
production under limited plantation area, but also benefit to achieving 
the production goal without extensively expanding the plantation area. 

To this end, observation of oil palm’s health conditions contributes to 
alleviating the expansion of oil palm and the threat to tropical forests. 
For example, the discrete smallish palms may be under abnormal growth 
stage because their growing conditions are not as good as others that 
were planted at the same time, which are supposed to be taken special 
care and inspection. According to the distribution of oil palms in 
different health conditions, farmers can conveniently and efficiently find 
the dead palms and the mismanaged palms, so that they can replant 
them or weed the fields to make better management. Also, through ac
curate detection of yellowish palms, oil palm industries can duly observe 
the health conditions of oil palms and treat pests and diseases for plants, 
preventing them from spreading the whole plantation. However, exist
ing studies mainly focus on growing status mapping for crops or trees 
using mid-resolution remote sensing images, such as MODIS (Huang 
et al., 2012) and Landsat (He et al., 2019), instead of precisely locating 
individual diseased tree using very-high remote sensing images. In our 
proposed MOPAD, we not only detect oil palm tree crowns with high 
accuracies, but also classify the oil palms into five growing status for 
each detecting oil palms: healthy palms, dead palms, mismanaged 
palms, smallish palms and yellowish palms. To the best of our knowl
edge, we are the first to detect the different growing status of oil palms 
and the vacancies (see Section 6.2) (Baena et al., 2017; Mubin et al., 
2019; Johansen et al., 2020; Selvaraj et al., 2020). Our proposed 
MOPAD contains two improved strategies compared to other state-of- 
the-art object detection methods: i.e., the Refined Pyramid Features 
(RPF) and the hybrid class-balanced loss module, improving the accu
racies of detecting smallish palms and the types that have quite low 

Fig. 17. Examples of our oil palm vacancy detection results. The blue squares denote the vacancies detected by our method. The left shows the correctly detected 
vacancies and the right shows wrong or missing vacancies because of the FP and the FN from our proposed MOPAD. 
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number of training samples. Furthermore, the inference time of our 
MOPAD is comparable with other state-of-the-art object detection 
methods, within 15 min to complete the whole Image A (169,374 oil 
palms, 17.6 km2). As for traditional machine learning methods (i.e., RF 
and SVM) and CNN classification based method, the inference speed is 
relatively slow due to the time-consuming sliding window technique. 
We believe that the growing status observation for oil palm plantations 
based on MOPAD contributes to more efficient and smart plantation 
management of oil palms. 

7.3. The potential future works 

MOPAD is an encouraging tree crown detection method that dem
onstrates highly promising results for multi-class oil palm tree detection. 
Our method suggests that automatically monitoring the different 
growing status of oil palm trees is applicable for precision plantation 
management. However, our proposed MOPAD and its applications 
introduced in Section 6 still exist some limitations and could be further 
improved. From the data-collection perspective, given the limitation of 
the visible-band-only UAV images adopted in this paper rather than 
multi-spectral sensors, we could not exploit the inherent properties 
among the different growing status of oil palms. RGB-band images only 
capture the visible representative features, like gray leaves for dead 
palms and yellow spots for yellowish palms. Multi-spectral UAV images 
are more capable of adequately capturing intrinsic features for oil palms 
that are sick (Dash et al., 2017; Johansen et al., 2020), dead (Baena 
et al., 2017; He et al., 2019) or surrounded by other weeds or plants 
(Stroppiana et al., 2018). From the application perspective, although we 
firstly present a vacancy detection method in Section 6.2, the method is 
based on a brute-force area selection accounting for the number of 
detected palms and a time-consuming sliding-window-based technique. 
To our knowledge, combining with oil palm plantation mapping (Dong 
et al., 2019a; Xu et al., 2020) and designing an end-to-end vacancy 
detection algorithm might further improve the efficiency (Wu et al., 
2020a; Windrim & Bryson, 2020). Furthermore, to broaden our work for 
smart oil palm plantation management, our work can be further applied 

to improve yield and biomass prediction (You et al., 2017; Zhou et al., 
2017; Maimaitijiang et al., 2020) for individual oil palms, with the 
different growing status taken into consideration. 

8. Conclusions 

In this paper, we propose an accurate and multi-class oil palm tree 
detection algorithm using UAV images, i.e., Multi-class Oil PAlm 
Detection (MOPAD). MOPAD comprises three main procedures. Firstly, 
we design a Refined Pyramid Features (RPF) after feature extraction. 
RPF integrates multi-scale features to attain more accurate oil palm 
detection results like smallish palms. Secondly, we inherit the Region 
Proposal Network (RPN) from Faster R-CNN with our designed anchor 
sizes for oil palms. Finally, we employ a Class-Balanced Cross-Entropy 
Loss (CBCEL) and a Class-Balanced Smooth L1 Loss (CBSLL) to re-weight 
the multi-class classification and regression loss because of the 
extremely imbalanced class number. 

We evaluate our proposed method using three large-scale oil palm 
plantation images photographed by UAV in two sites located in 
Indonesia (Site 1 and Site 2). Our study area consists of over 360,000 oil 
palms with five classes of oil palms, including healthy palms, dead 
palms, mismanaged palms, smallish palms and yellowish palms. The 
healthy class has the most number of oil palm, and there exists an 
extremely imbalanced problem among the five classes. Our compre
hensive ablation experiments show that our RPF and hybrid class- 
balanced loss module significantly increase the accuracies for multi- 
class oil palm tree detection. Our proposed MOPAD improves the 
average F1-score by 17.09% and 21.32% for multi-class oil palm 
detection compared with the Baseline (Faster R-CNN) in Site 1 and Site 
2, respectively. Our method has an overall oil palm detection F1-score of 
87.91% and 99.04%, and outperforms other state-of-the-art object 
detection algorithms (Cascade R-CNN, Libra Faster R-CNN, etc.) with an 
improvement of 10.37%-17.09% and 8.14%-21.32% in respect of the 
average F1-score for multi-class oil palm detection in Site 1 and Site 2, 
respectively. Furthermore, we introduce two practical applications for 
smart oil palm plantation management based on our detection results, 

Fig. 18. The transfer matrices of F1-score for five classes (i.e., Healthy palm, dead palm, mismanaged palm, smallish palm and yellowish palm) and their average. 
The site names in the left of each matric denote the source domain (training dataset), and the site names below each matric denote the target domain (test dataset). 
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including in-depth analysis of different classes of oil palm distribution 
and practical and useful workflow for detecting oil palm vacancies. Our 
method demonstrates excellent potential for individual oil palm tree 
detection and multi-class monitoring of growing status using visible- 
band-only UAV images, leading oil palm industries and smallholders 
to precisely manage plantation and efficiently deal with unhealthy oil 
palms. 

In the future, we will explore and develop a more effective and ac
curate multi-class oil palm tree detection method, and apply them to 
larger-scale and more complex areas using multi-source and multi- 
temporal remote sensing images. Furthermore, the strategies proposed 
in this paper, such as fusing and refining multi-level feature character
istics and the hybrid class-balanced loss module, are not only suitable for 
detecting other kinds of trees besides oil palms, but also applicative to 
other precise agriculture applications, such as crop mapping, disease 
detection, plant species classification, etc. We will explore the potential 
of our method for other precise agriculture applications in our future 
work. 
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Appendix A. Detailed information for our UAV and our datasets 

Figs. A1, A2 and Tables A1 and A2. 

Fig. A1. The structure and technical data of Skywalker X8 used in this paper.  

Fig. A2. Examples of different types of oil palms from side view at a closer distance, including healthy palms, dead palms, mismanaged palms, smallish palms and 
yellowish palms. 

Table A1 
Data collection information and camera specifications used in this paper.  

Index Component specification 

Aerial platform Skywalker X8 
Altitude 500 m for Site 1; 425 m for Site 2 
Cruise speed 15–20 m/s 
Camera Sony a6000 
Focal length 20 mm 
Field of view [Horizontal, Vertical] [60.87◦, 42.61◦] 
Red [Center wavelength, Bandwidth] [668 nm, 10 nm] 
Green [Center wavelength, Bandwidth] [560 nm, 20 nm] 
Blue [Center wavelength, Bandwidth] [475 nm, 20 nm]  

Table A2 
The number of images for training, validation and test dataset in Site 2. The 
training, validation and test datasets are generated from the training, validation 
and test regions, respectively.  

Type Training 
dataset 

Validation 
dataset 

Test dataset 
Image A Image 

B 
Total 

Healthy palm 216,743 17,095 153,955 788,02 232,757 
Dead palm 434 71 59 30 89 
Mismanaged 

palm 
2658 51 794 242 1036 

Smallish palm 47,411 12,480 12,541 1193 13,734 
Yellowish 

palm 
5724 931 2025 854 2879 

Total 272,970 30,628 169,374 81,121 250,495  
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Appendix B. The supplemental results for Multi-class oil PAlm 
tree detection (MOPAD) 

Figs. B1, B2 and Tables B1–B4. 

Fig. B1. Failure cases for FP and FN of oil palm detection in test regions in Site 1.  

Fig. B2. The F1-scores of different size of input image for our MOPAD.  

Table B1 
The detection results of our proposed MOPAD for the test regions in Site 2.  

Index Oil palm Healthy palm Dead palm Mismanaged palm Smallish palm Yellowish palm 

TP 248,472 231,186 40 612 12,559 2183 
FP 2772 1076 56 1097 1755 680 
FN 2023 1571 49 424 1175 696 
Precision 98.90% 99.54% 41.67% 35.81% 87.74% 76.25% 
Recall 99.19% 99.33% 44.94% 59.07% 91.44% 75.82% 
F1-score 99.04% 99.43% 43.24% 44.59% 89.55% 76.04%  
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Appendix C. The workflow of CNN classification based method 
for oil palm tree detection 

We firstly select six types of samples including background, healthy 
palms, dead palms, mismanaged palms, smallish palms and yellowish 
palms. Background denotes other land cover types except oil palms, such 
as other vegetation, buildings, roads, etc. The training workflow is dis
played in Fig. C1. For fair comparison, we adopt ResNet-101 as our 
feature extractor. Note that the size of selected samples is 80 × 80 pixels 
for Site 1 and 120 × 120 pixels for Site 2, respectively. Before input the 
network, we resize the original image to 224 × 224 pixels for appro
priate size. 

For inference procedure, we adopt sliding window technique to 

Fig. C2. The inference workflow of RF/CNN/CNN classification based method for oil palm tree detection.  

Fig. C1. The training workflow of CNN classification based method for multi-class oil palm tree detection (ResNet-101).  

Table B3 
The F1-scores of other state-of-the-art tree crown detection methods in Site 2.  

Method Healthy palm Dead palm Mismanaged palm Smallish palm Yellowish palm Average F1-score 

RF 81.06% 0.00% 0.12% 42.84% 1.60% 25.12% 
SVM 86.19% 0.00% 0.73% 40.95% 2.36% 26.05% 
CNN (ResNet-101) 87.11% 3.25% 2.63% 46.57% 4.44% 28.80% 
Faster R-CNN 98.58% 7.94% 17.46% 78.25% 44.01% 49.25% 
Grid R-CNN 98.52% 21.79% 25.17% 79.39% 51.38% 55.25% 
GA Faster R-CNN 98.36% 26.57% 42.36% 79.70% 49.87% 59.37% 
Cascade R-CNN 98.67% 17.96% 41.05% 80.37% 67.41% 61.09% 
Libra Faster R-CNN 98.40% 22.62% 41.84% 82.63% 66.64% 62.43% 
MOPAD (ours) 99.43% 43.24% 44.59% 89.55% 76.04% 70.57%  

Table B4 
The F1-scores of ablation study of the anchor sizes and aspect ratios.  

Ratios Scale Healthy palm Dead palm Mismanaged palm Smallish palm Yellowish palm Average F1-score 

{1:2, 1:1, 2:1} {1282, 2562, 5122} 98.12% 6.98% 18.83% 68.04% 42.49% 46.89% 
{1:1} {1282, 2562, 5122} 98.37% 8.63% 17.46% 65.80% 47.41% 47.53% 
{1:2, 1:1, 2:1} {322, 642, 1282, 2562} 98.40% 8.66% 18.65% 78.07% 43.56% 49.47% 
{1:1} {322, 642, 1282, 2562} 98.58% 7.94% 17.46% 78.25% 44.01% 49.25%  

Table B2 
The confusion matrix for multi-class oil palm detection of our proposed MOPAD 
in Site 2, in which the top row denotse the ground truth types and the left column 
denotes the predicted types.  

Index Healthy 
palm 

Dead 
palm 

Mismanaged 
palm 

Smallish 
palm 

Yellowish 
palm 

Healthy palm 273,283 8 137 23 639 
Dead palm 17 59 3 7 26 
Mismanaged 

palm 
392 2 685 24 17 

Smallish palm 103 3 93 18,236 8 
Yellowish 

palm 
632 7 0 1 2378  
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predict all oil palms in the whole image, which is a time-consuming 
scheme. The size of the sliding window is 80 × 80 pixels for Site 1 
and 120 × 120 pixels for Site 2, which is consistent with the training 
phase. In this study, the sliding step is set as five pixels through exper
imental tests. After the labels of all samples in the test regions are pre
dicted, we merge the overlapping samples according to the Euclidean 
distance (Li et al., 2017). Fig. C2 illustartes the overall procedures of our 
inference workflow for CNN classification based method. Note that the 
traditional machine learning based methods, i.e., RF and SVM adopt the 

same inference workflow. 

Appendix D. More detection results for our MOPAD and other 
state-of-the-art methods  

Fig. D1. Multi-class oil palm tree detection results for Region 3 in Site 1. The black circles denote some examples where our MOPAD outperforms other tree crown 
detection methods. 
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Fig. D2. Multi-class oil palm tree detection results for Region 4 in Site 1. The black circles denote some examples where our MOPAD outperforms other tree crown 
detection methods. 

Fig. D3. Multi-class oil palm tree detection results for Region 5 in Site 1. The black circles denote some examples where our MOPAD outperforms other tree crown 
detection methods. 
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Fig. D4. Multi-class oil palm tree detection results for Region 3 in Site 2. The black circles denote some examples where our MOPAD outperforms other tree crown 
detection methods. 

Fig. D5. Multi-class oil palm tree detection results for Region 4 in Site 2. The black circles denote some examples where our MOPAD outperforms other tree crown 
detection methods. 
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