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Abstract— Although enormous domain adaptation (DA)
approaches have been proposed for cross-scene hyperspectral
image (HSI) classification, the majority of DA methods strongly
depend on much prior knowledge of the association among the
label sets of source and target domains (encompassing closed
set, partial, and open set DA), thereby significantly hindering
their applications. Realistic application scenarios often require
knowledge transfer between domains without restrictions on the
label space, which is called universal domain adaptation (UniDA).
In this article, we propose HyUniDA, which is the first attempt
to address UniDA scenario from HSIs. HyUniDA contains two
major parts: shared semantic pairing (SSP) and domain simi-
larity score (DSS). We group both source and target domains to
form discriminative clusters. The SSP identifies pairs of clusters
that have coincident semantic features as the common classes.
By examining the consistency level of samples across source
and target domains, DSS can estimate the quantity of target
clusters and generate distinct clusters without prior knowledge.
Meanwhile, we apply the contrastive domain discrepancy to
alleviate the offset of samples distribution, with a representative
regularizer to assist in distinguishing target-domain clusters.
We evaluate our proposed method on three transfer learning
tasks for six typical HSI datasets; it turns out that our proposed
method yields 3.83%–37.57% improvements compared to other
state-of-the-art (SOTA) DA methods.

Index Terms— Cross scene, domain alignment, hyperspectral
image (HSI) classification, shared semantic pairing (SSP), uni-
versal domain adaptation (UniDA).
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I. INTRODUCTION

HYPERSPECTRAL images (HSIs) possess vast amounts
of spatial texture and spectral features. They can obtain

hundreds of spectral bands spanning from ultraviolet to
infrared, and exhibit a remarkable capacity for information
detection. HSI classification has been a research hotspot
for remote sensing image processing [1], with extensive
applications in geological exploration [2], environmental mon-
itoring [3], and smart agriculture [4], [5]. However, the spectral
information in HSI mostly does not display a linear relation
with the materials of the land surface.

Deep learning has been acknowledged as a capable feature
extraction tool, which can tackle nonlinear problems efficiently
and show excellent performance in tasks such as image
classification [6], [7], [8], [9], object detection [10], [11],
[12], [13], [14], and image segmentation [15], [16], [17],
[18]. The rapid advancement of these algorithms has led to
the introduction of some deep learning-based methods in HSI
classification, which have been proven to be superior on HSI
datasets [19], [20], [21]. In HSI classification, reliance on
abundant labeled datasets is essential, notably for training
deep neural networks with numerous parameters [22]. Further-
more, traditional machine learning-based HSI classification
assumes the independence and identical distribution (IID)
principle, requiring the training data (source domain) and
testing data (target domain) to be independent and identically
distributed [23], [24]. Maintaining IID is crucial to pre-
vent performance degradation caused by domain distribution
gaps [25]. The time-consuming and laborious for labeling
samples raises a major barrier to HSI classification, and the
spectral information of HSI varies with the season and weather
conditions of data acquisition, resulting in a shift between the
source and target domains. Recent studies have demonstrated
the feasibility of classification with limited sample sizes. For
instance, Zhu et al. [26] proposed a spectral–spatial-dependent
global learning framework, addressing the limitations posed
by a scarcity of samples. Numerous convolutional neural net-
work (CNN)-based classification methods face challenges in
generalizing effectively across cross-domain tasks, particularly
where the training and testing samples originate from different
data distributions [27], [28], [29], [30].

Transfer learning is particularly useful to address this issue,
where domain adaptation (DA) can transfer knowledge via
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a completely annotated source to an unknown target domain
by narrowing the distribution gap among source and tar-
get domains [31], [32], [33], [34]. Unsupervised DA allows
to leverage labeled data from other, more easily accessible
domains, to improve performance in the target domain with
unlabeled data. Yan et al. [35] take the changes of class
prior distributions into account and add class-specific auxiliary
weight bias to maximum mean discrepancy (MMD). Besides
that, adversarial learning methods have also been applied
in DA to train a model that cannot be distinguished by
the domain classifier to learn domain invariant features. Pei
et al. [36] propose the multi-adversarial domain adaptation
(MADA) method to capture multimode structures based on
multiple domain discriminators. Long et al. [37] propose
conditional domain adversarial networks (CDANs) to con-
dition the adversarial adaptation models on discriminative
information. Cross-scene HSI classification methods using DA
have been widely applied [38], [39]. In the HSI community,
Deng et al. [40] propose multikernel learning with active
learning (MKL-AL) to retrain a multikernel classifier with a
small number of labeled samples by active learning. Wang
et al. [41] propose domain adaptation broad learning (DABL),
which uses MMD in mapped features and adds manifold regu-
larization to the input and output layer. Ma et al. [24] introduce
three modules for domain alignment, task distribution, and DA
to minimize the domain discrepancy and transfer ability of the
source model to the target domain.

Most existing HSI classification methods adhere to a strict
and ideal assumption. It is required that identical label sets
should be shared between the source domain and target
domain, that is, all categories of ground objects in the target
domain must appear in the training set. This is the closed
environment, and the DA in this scenario is named the closed
set DA, as depicted in Fig. 1(a) [42]. Due to the diversity
of land covers, this assumption may not be valid in some
cases, and categories absent in the training set may emerge
unexpectedly in the test set. Typical closed-set DA methods
employ a linear classification layer or softmax function, which
usually yields the maximum probability for an unknown class
according to the known class. As illustrated in Fig. 1(b),
the open set setting involves a scenario where the classes
recognized in the source domain form a segment of the
classes observed by the target domain. The DA in an open
set environment is designed to effectively and robustly handle
the unknown class of the target domain (i.e., target private
class) [43], [44], [45]. Yue et al. [43] propose a spectral–spatial
latent reconstruction framework to achieve robust unknown
detection. Xie et al. [44] present feature consistency-based
prototype network (FCPN) with a prototype-guided open set
module to identify the outliers. What is more, the uncommon
categories may appear in the source domain (i.e., source
private class). As illustrated in Fig. 1(c), a notable observation
is that the source domain contains a set of labels for the
target domain, representing the partial environment [46], [47].
DA for these scenarios is termed the partial DA.

The aforementioned DA settings might face challenges in
terms of rationality and realism when dealing with an unsu-
pervised target domain. Furthermore, universal DA (UniDA)

Fig. 1. Illustration of different DA settings. (a) Closed set DA. The classes
in both the source and target domains exactly match. (b) Open set DA. The
label set of the source domain is a subset of the target domain, signifying
the existence of unknown class in the target domain. (c) Partial DA. The
source domain contains a set of labels for the target domain, i.e., the unknown
class may appear in the source domain. (d) Universal DA. Both source and
target domains have individual private classes, but without knowing any prior
information.

generalizes the above three DA settings [48], [49], [50].
UniDA defines a scenario where the source and target domains
usually share some labels, but at the same time, each has a
private set of labels that the other does not have, which is
not restricted to any prior knowledge, as shown in Fig. 1(d).
You et al. [48] propose the idea of UniDA and design universal
adaptation network (UAN) to discover the common and private
label sets by exploiting both domain similarity and prediction
uncertainty for each sample. Saito et al. [51] present domain
adaptative neighborhood clustering via entropy optimization
(DANCE) to learn the structure of the target domain with the
neighborhood clustering method. Chang et al. [52] propose
unified optimal transport framework for UniDA (UniOT) to
find common classes without hand-tuned threshold and use
global statistical information of the assignment matrix to
distinguish common and private classes.

The scenario setting of UniDA is more practical and com-
mon in the field of remote sensing. For instance, researchers
have a model trained on the labeled dataset of the Amazon
rainforest and hope to apply it to a new study area, such as
the Himalayas. The new region differs from the previous study
area and may contain categories that have never appeared
in training datasets, such as alpine meadows and bare rock.
Meanwhile, the target domain lacks swamp and wetland areas
that are unique to the Amazon. Another common task is land
cover mapping. Metropolitan areas like New York, NY, USA,
and Tokyo, Japan, always attract the attention of researchers,
and their land cover-type maps are easily obtained. When
we want to study a microcity, such as Sedona, DA can
greatly reduce the cost of mapping. However, the land types
in the two cities are very different, and the Red Rock is
also privately owned by Sedona. Efficiently distinguishing the
common samples from the private samples of both domains
is a major challenge in transferring across label spaces that
are out of alignment. UniDA can cope with land-type changes
across different cities and environments and help models learn
transfer between different areas, enabling them to identify
and adapt to new feature types. Notably, Xu et al. [53]
proposed a UniDA method for RGB image classification,
model adaptation domain adaptation (MA) and source data
generation–model adaptation (SDG-MA), which manually set
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Fig. 2. Structure of our proposed HyUniDA, which involves two major parts: i.e., SSP and DSS. We group the instances from both the source and target
domains into distinct clusters. Using the SSP to identify common classes among target clusters, if two clusters from both domains serve as the closest neighbors
to each other, the instances belonging to the pairs of clusters are recognized as common ones that share the identical semantic annotations. In order to select
the optimal target cluster, we establish a new metric DSS, which represents the degree of consistency among the cluster pairs. To the end, we apply the CDD
to alleviate the offset of samples distribution, with a representative regularizer to assist in distinguishing target-domain clusters.

thresholds to detect common and unknown samples, limit-
ing their extension to more practical scenarios. In the HSI
community, while various methodologies have been advanced
to address the challenges posed by DA scenarios [54], [55],
seldom work is devoted to this important and practical but
challenging situation (UniDA setting).

To address the aforementioned problems, we propose a
UniDA framework based on the shared semantic pairing
(SSP) and domain similarity score (DSS) for cross-scene HSI
classification, namely, HyUniDA, to identify the class structure
of the target domain. We cluster the source domain and target
domain, respectively, to form discriminative clusters. Using
SSP to explore semantic information for sample clusters, and
when two cluster centers simultaneously act as centers closest
to each other, the pair will be considered a common cluster.
Next, we design the DSS to characterize the proportion of
samples that achieve semantic agreement. By examining the
consistency level of samples across source and target domains,
DSS can estimate the number of target clusters and generate
distinct clusters without prior knowledge. For those centers
that are unable to locate the cluster peers, we use a prototypical
regularizer to assist them in contacting attached centers. This
work provides the following key contributions to the HSI field.

1) Aiming at the inconsistency of label space in cross-scene
HSI classification, we propose the HyUniDA to solve the
UniDA from the perspective of common class detection.
As per our current awareness, this work stands out as
the first initiative to bring the UniDA setting to the HSI
field.

2) The proposed HyUniDA consists of SSP and DSS. SSP
identifies cluster pairs with coincident semantic features
as common classes, while DSS estimates the number
of target clusters and generates distinct clusters without
prior knowledge, enhancing the model adaptability in
HSI.

3) The model incorporates contrastive domain discrep-
ancy (CDD) to alleviate sample distribution offset
and introduces a regularizer for effective target-domain
cluster distinction, which enhances the robustness and
efficacy of the proposed framework in addressing chal-
lenges associated with sample distribution shifts in HSI
classification.

The subsequent sections are organized as follows. Section II
delves into the details of the proposed HyUniDA methods,
followed by the exposition of our datasets in Section III.
The performance evaluation, along with comprehensive exper-
iments and analyses, is undertaken in Section IV. Finally,
we conclude the article in Section VI.

II. METHODOLOGY

Fig. 2 is employed to showcase an outline of the proposed
HyUniDA. First, we cluster the target samples based on the
K -means and get centers of the candidate clusters. We use
the SSP to determine the clusters for that represent common
classes in both domains within the obtained target clusters.
When two clusters, each representing a distinct domain,
become the closest counterparts to one another, the instances
belonging to the pairs of clusters are recognized as common
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Fig. 3. Semantic encoder for the spatial and spectral construction processes.
The 12 × 12 convolution kernel integrates spectral details, producing spectral
embedding features fspe (1 × 1 × 64). A subsequent deconvolution 2-D
operation transforms the spectral feature into a 12 × 12 × 64 feature map.
Simultaneously, the spatial patch is condensed via a 1 × 1 convolution kernel.
The spatial feature is mapped back to a 12 × 12 × 64 feature map.

ones that share the identical semantic annotations. Then, the
DSS is utilized to quantify the consistency among the paired
clusters, and the cluster with the higher score indicates better
consistency with the source-domain cluster. Lastly, we apply
the CDD to alleviate the offset of samples distribution, with
a representative regularizer to assist in distinguishing target-
domain clusters.

A. Problem Setting

Given that Ds
= {(xs

i , ys
i )}

ns
i=1 is the labeled source domain,

where xs
i is the data, ys

i is the corresponding label, and ns

denotes the number of source samples. The target domain
is unlabeled Dt

= {(xt
i )}

nt
i=1. For xs

i , xt
i ∈ RH×W×B and

ys
i ∈ {0, 1, 2, . . . , Ks}

H×W , H and W correspond to the height
and width of the HSI, respectively, B represents the spectral
band size, and Ks represents the amount of ground-truth
classes. The annotation sets for the source and target domains
are referred to as Cs and Ct , separately. The label set that
encompasses classes owned by both domains is denoted as
C = Cs ∪ Ct , and Cs = Cs\C stands for a set of annotations
specific to the source domain. The private label set assigned to
the targeted domain is denoted as Ct = Ct \C, which is regarded
as unknown class. Our goal is to identify the target instances
into any given label from the Cs or the unknown class.

B. Shared Semantic Pairing

1) Semantic Encoder: In light of the robust spatial recogni-
tion and diverse multiband spectral details present in HSI data,
the semantic encoder initiates a workflow for creating spatial
and spectral dimensions, as shown in Fig. 3. The integration of
spectral information contained in the patch is accomplished by
a 12 × 12 convolution kernel during the spectral generation
process, yielding spectral embedding features fspe with dimen-
sions 1 × 1 × 64. Utilizing the deconvolution 2-D operation,
the spectral feature (Spe) undergoes a transformation, resulting
in a feature map sized 12 × 12 × 64. The source domain con-
tributes the spatial patch of 12 × 12 × d in the HSI dataset,
which is then subjected to semantic encoding by the generator.
Employing the 1 × 1 convolution kernel leads to the dimen-
sion of the spatial patch being condensed to 12 × 12 × 3.
Feature map fspa represents spatial information. The spatial
feature (Spa) is mapped back to a 12 × 12 × 64 feature map.

We group the source- and target-domain samples into
clusters, respectively. The center of j th source cluster, ζ s

j ,

can be written as

ζ s
j =

1
ns

j

∑
xs

i ∈Ds
j

G f
(
xs

i

)∥∥G f
(
xs

i

)∥∥ (1)

where Ds
j = {xs

i }
ns

j
i=1, feature extractor G f maps the input

images into vector representation, and ζ s
j is computed by

the weighted average of feature vectors across all samples
in the cluster. For the purpose of clustering target samples,
we employ K -means to categorize them into K groups, and
the associated centers are denoted as {ζ t

1, . . . , ζ
t
K }.

Distinguishing between public and private samples is the
main difficulty in UniDA. The construction of the SSP is
devised to foster semantic-level associations among clusters
that belong to identical classes. We seek the most proximate
cluster center within the other domain for each cluster center.
When the two clusters are simultaneously the closest to each
other, they form the pair of common cluster.

By means of K -means clustering, we determine the original
prototypes corresponding to target samples, {ζ t

1(0)), . . . , ζ
t
K (0))}.

Herein, we present a detailed evaluation mechanism for pro-
totypes during the training process. At every iteration, the
determination of localized prototypes within a batch is expli-
cated as follows:

ζ
t
k(I) =

1∣∣∣Dt
k(I)

∣∣∣
∑

xt
i ∈D

t
k(I)

G f
(
xt

i

)∥∥G f
(
xt

i

)∥∥ (2)

where ζ
t
k(I) is calculated in a similar way to ζ s

j above, I repre-
sents the running iteration, and Dt

k(I) indicates target samples
characterized by the cluster label k during the iteration I. The
global prototype undergoes the following update:

ζ t
k(I) = δIζ

t
k(I−1) + (1 − δI)ζ

t
k(I). (3)

The update results from a weighted fusion of the previous
global instance ζ t

k(I−1) and the average prototype ζ
t
k(I) at the

current. δI is the cosine similarity among the local instances
and global instances, which can be expressed as follows:

δI =

〈
ζ t

k(I−1), ζ
t
k(I)

〉
∥∥ζ t

k(I−1)

∥∥∥∥∥ζ
t
k(I)

∥∥∥ . (4)

Through an adaptive mechanism driven by the agreement
between global and local instances, the prototype bank under-
goes updates in a manner that maximizes efficiency.

C. Optimization of Target Clusters

While the SSP excels at recognizing common classes,
gauging the quantity of target clusters proves challenging in
the absence of information regarding the class distribution
in the target domain. Some studies have proposed clustering
evaluation criteria to measure the number of clusters [56].
Unfortunately, these methods are tailored to a single domain
and do not directly account for cross-scene knowledge. As a
solution, we suggest using DSS to identify the number of target
clusters based on the consistency across samples.

For a pair of clusters {ps
i }

m
i=1 and {ps

i }
n
i=1, whose centers

are ζ s
j and ζ t

k , respectively, for each sample of the source
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Algorithm 1 Unified UniDA Framework for HSI

Input: Source domain Ds
=

{(
xs

i , ys
i

)}ns

i=1, target domain
Dt

=
{(

xt
i

)}nt

i=1, and trade-off parameter λ, ω.
Output: Well-trained feature extractor G f and classifier Gc,

predicted label ŷt for target domain.
1: Extract source and target samples and initialize the model.

2: while not converged do
3: Train source domain and calculate the (LSD) according

to Equation (8);
4: Cluster pairing, the cluster centers for source and target

are calculated according to Equation ( 1) and ( 2)

respectively.
5: Cross-domain alignment on identified common samples

with CDD, according to Equation (10)–(13);
6: Train target domain and calculate the (LT D) according

to Equation (14);
7: if Iteration > 1 then
8: Update the target centers according to Equation (3)

and (4);
9: end if

10: Update the feature extractor G f and classifier Gc.
11: end while
12: Obtain the predicted label ŷt for target domain.

domain, the distance between it and the target cluster centers
{ζ t

1, . . . , ζ
t
K } is calculated

ds
i,k =

〈
ps

i , ζ
t
k

〉∥∥ps
i

∥∥∥∥ζ t
k

∥∥ , k ∈ {1, . . . , K }. (5)

The score of sample clustering, SCSs
( j,k), is the proportion

of those samples in the clustered pair formed by the SSP that
appear in both domains. It can be expressed as follows:

SCSs
( j,k) =

∑m
i=1 1

{
arg maxk

(
ds

i,k

)
= k

}
m

(6)

when the condition is true, the binary indicator 1{·} assumes
a value of 1; otherwise, it takes on a value of 0. Similarly, the
score of sample clustering for the target domain SCSt

( j,k) can
be obtained. The DSS is the average of the two scores

DSS( j,k) =
SCSs

( j,k) + SCSt
(c,k)

2
. (7)

Finally, we calculate the average DSS across all correspond-
ing cluster pairs. The optimal number of target clusters is
deduced by conducting clustering experiments with different
values of K . We perform the DSS calculation over a range of
K values at regular intervals and opt for the one demonstrating
the utmost score to guide the ensuing clustering process.

We aim to ascertain the value of K in one search, but
the vast domain gap at the initial training phase makes this
unfeasible. The DSS initially rises and then falls with the
increase of K value. To enhance search efficiency, the search
is halted when the score decreases several times consecutively,
and a fixed value of K is retained at certain rounds.

D. Domain Alignment

Cross-scene HSI classification faces a substantial challenge
attributed to spectral shift. Spectral reflectance of the identical
land cover type can often differ in the source and target HSIs.
The feature generator G f can be applied to obtain the discrim-
inant features of the source domain, after which the classifier
Gc divides the samples into different categories. Throughout
the HyUniDA training process, the primary emphasis lies
in minimizing the loss associated with label predictions on
labeled HSI cubes originating from the source domain. This
strategic optimization aims to refine the parameters of both G f

and Gc for the purpose of decreasing experiential loss of the
source HSI. The classification loss for source domain (LSD)

can be formulated as follows:

LSD =
1
ns

ns∑
i=1

LCE
(
Gc

(
G f

(
x s

i

))
, ys

i

)
= −

1
ns

ns∑
i=1

|Cs |∑
c=1

ŷs
i,c log

(
π

(
Gc

(
G f

(
x s

i

))))
(8)

where LCE represents the standard cross-entropy loss, ŷs
i,c

represents the one-hot encoding correspond to the source label,
and π signifies the Softmax function.

After the SSP has been completed, the identified common
samples are gathered into clusters and we need to align these
samples using a class-aware approach. MMD [57] delineates
the disparity between the source and target domains in terms
of the average embeddings distributed within the reproducing
kernel Hilbert space (RKHS). The formulation is given by
DH(P, Q) ≜ sup f ∼H (EX s [ f (X s)] − EX t [ f (X t )])H, where
H is a class of functions, and {xs

i } and {xt
i } are sampled from

the marginal distributions P(X s) and Q(X t ), respectively. The
MMD distance can be denoted as

Dmmd
=

∥∥∥∥∥∥ 1
ns

ns∑
i=1

φ
(
xs

i

)
−

1
nt

nt∑
j=1

φ
(
xt

j

)∥∥∥∥∥∥
2

H

(9)

where the model is parameterized by φ. Despite MMD has
worked well in measuring the marginal distribution difference
between two domains, it focuses on domain-level distinctions,
without consideration for the sample classes. It is unable to
distinguish if samples of two domains exhibit alignment with
the corresponding class labels.

CDD incorporates both the interclass and intraclass dis-
crepancies based on MMD to realize class-aware align-
ment [58], [59]. CDD employs the maximum value of
squared distance between the kernel means of two conditional
distributions in RKHS and extends MMD by gauging the
variance between P(φ(X s)|Y s) and Q(φ(X t )|Y t ), that is,
DH(P, Q) ≜ sup f ∼H(EX s [ f (φ(X s)|Y s)] − EX t [ f (φ(X t )|

Y t )])H. The empirical estimate for squared DH(P, Q) at
the lth layer of CNN is given as follows (ŷt

1, ŷt
2, . . . , ŷt

nt
is

abbreviated as ŷt
1:nt

):

D̂c1c2(ŷt
1:nt

, φ) = 9c1c1(s, s) + 9c2c2(t, t) − 29c1c2(s, t) (10)
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where

9c1c2(s, t) =

ns∑
i=1

nt∑
j=1

µc1c2(ys
i , ŷt

j )kl(φ(x s
i ), φ(x t

j ))∑ns
i=1

∑nt
j=1 µc1c2(ys

i , ŷt
j )

µc1c2(y1, y2) =

{
1, if y1 = c1, y2 = c2

0, otherwise.
(11)

kl represents the kernel applied to the lth layer in CNN; c1 and
c2 are the class labels of source and target HSIs, respectively.
When c1 = c2 = c, it captures domain discrepancy intraclass
and strives to minimize the intraclass difference, thereby
enhancing the compactness of sample features within the class.
Whereas if c1 ̸= c2, it represents domain discrepancy interclass
and aims to maximize the difference between features of var-
ious classes, consequently enhancing their separation toward
the decision-making boundary.

As per the quoted definition, CDD is quantified by the
difference between discrepancy within classes (D̂intra

l ) and
discrepancy among different classes (D̂inter

l )

D̂cdd
l = D̂intra

l − D̂inter
l =

1
|Cs |

|Cs |∑
c=1

D̂cc(ŷt
1:nt

, φ)

−
1

|Cs |(|Cs | − 1)

|Cs |∑
c=1

|Cs |∑
c′

=1,
c′

̸=c

D̂cc′

(ŷt
1:nt

, φ). (12)

Within a deep CNN, the objective is to reduce CDD across
multiple fully-connected layers; specifically, the task involves
minimizing

LCDD =

L∑
l=1

D̂cdd
l . (13)

CDD is a key component of HyUniDA, enhancing the model’s
ability to generalize across different datasets and scenarios.
CDD minimizes intraclass differences and maximizes inter-
class margins, which is effective in HSI applications with
spectral variations. By addressing class-level domain differ-
ences uniquely and optimizing them in a contrasting manner,
HyUniDA attains enhanced domain alignment.

As with the source domain, we calculate the classification
loss LT

cls for the target domain by utilizing standard cross-
entropy loss, thereby improving the discriminability of the
model. In addition, we apply an entropy regularization loss
LT

reg upon the target scene to augment the distinctness of the
target instances.

There is a prototype set � = [ζ t
1, ζ

t
2, . . . , ζ

t
K ], which

contains L2-normalized centers of each target cluster, with
ongoing iterative adjustments applied to the prototypes
throughout the training process. The loss for target domain
LTD consists of the classification loss LT

cls and the prototypical
regularizer LT

reg, and it can be expressed as

LTD = LT
cls + LT

reg

=
1
nt
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where ŷt
i is the one-hot cluster label, p̂i,k is the predicted

probability by the classifier in the target domain, vector vi

represents the normalized feature for the target domain, and
the temperature parameter τ consistently configured to 0.1.

E. Unified UniDA Framework for HSI (HyUniDA)

In our quest for UniDA in HSI community, we introduce a
unified domain adaptation (HyUniDA) framework that seam-
lessly integrates three crucial components: the cross-entropy
loss (LSD) on source samples, the loss associated with the
target domain (LTD), and the CDD loss (LCDD). The training
procedure of HyUniDA is depicted in Algorithm 1.

Our objective is to optimize a range of loss functions,
which address the inherent complexities of HSI data and the
challenges posed by varying source and target domains. The
LSD ensures effective utilization of source samples, adapting
them to the distinctive features of the target domain. Mean-
while, the LTD facilitates the alignment of the model with
the distinctive characteristics inherent to the target domain.
The LCDD leverages class-aware distribution analysis, allowing
to quantify the divergence among source and target domains
more comprehensively. The overall objective is delineated via
the following formulation:

L = LSD + γLTD + λLCDD. (15)

To enable the cluster number to grow in the initial training
phase and avoid the acquisition of more private samples
postsaturation, we introduce incremental parameters γ . γ =

e−ω×(2/N ), where i and N symbolize the current and global
iteration, respectively, with ω = 3.0. The λ is consistently
configured at 0.1 for all datasets. Through the strategic integra-
tion of these loss components, we aim to provide an effective
solution for handling the inherent challenges associated with
diverse HSI datasets and domain shifts.

III. DATASETS

Experiments using six publicly available cross-scene HSI
datasets, namely, Houston2013 and Houston2018, Pavia Cen-
ter and University, and HyRANK Dioni and Loukia, are
implemented to test the proposed HyUniDA. These datasets
exhibit both geographical diversity and spectral complexity.

1) Houston: This dataset encompasses scenes acquired
through different sensors, denoted as Houston2013 [60]
and Houston2018 [61], surveying the University of
Houston campus and its surroundings across different
years. Focusing on the overlapping region measuring
209 × 955 pixels in the Houston2013 and Houston2018
scenes, we explored the commonality within 48 spectral
bands. Seven classes are identified across both scenes.
In this article, we select the Nonresidential buildings
as source private class, Road as the target private class,
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Fig. 4. Visualization for Houston task: (a) Houston2013 in pseudo-color; (b) Houston2018 in pseudo-color; (c) Houston2013 ground-truth map; and
(d) Houston2018 ground-truth map.

TABLE I
NUMBER OF SAMPLES FOR HOUSTON DATASETS

TABLE II
NUMBER OF SAMPLES FOR PAVIA DATASETS

and the other five classes (class 1–5) as common classes.
Table I enumerates classes and their respective sample
counts. Refer to Fig. 4 for visual depictions, presenting
pseudo-color images alongside ground-truth maps.

2) Pavia: The dataset is composed of two components:
Pavia Center (1096 × 715 pixels) and University
(610 × 340 pixels). We abandoned the final spectral
band in Pavia University original cube to obtain the
Pavia dataset with consistent band, with a total of
102 bands. Both of them have the same seven classes. In
this article, we select the Meadow as source private class,
Bare soil as target private class, and the other five classes
(class 1–5) as common classes. Table II enumerates
classes and their respective sample counts. Refer to
Fig. 5 for visual depictions, presenting pseudo-color
images alongside ground-truth maps.

3) HyRANK: Derived from the Hyperion sensor, featuring
a diverse range of 176 spectral bands [62], the HyRANK
dataset presents two scenes marked with meticulous

Fig. 5. Visualization for Pavia task: (a) Pavia University in pseudo-color;
(b) Pavia Center in pseudo-color; (c) Pavia University ground-truth map; and
(d) Pavia Center ground-truth map.

TABLE III
NUMBER OF SAMPLES FOR HYRANK DATASETS

labeling, Dioni and Loukia. There are 12 consistent
classes for these two labeled scenes. In this article,
we select Sparsely Vegetated Areas and Rocks and Sand
as source private classes, Water and Coastal Water
as target private classes, and the other eight classes
(class 1–8) as common classes. Table III enumerates
classes and their respective sample counts. Refer to
Fig. 6 for visual depictions, presenting pseudo-color
images alongside ground-truth maps.

IV. EXPERIMENTAL RESULTS

A. Setup

Our evaluation encompasses six HSI datasets to gauge
the performance of the proposed method. Utilizing the
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Fig. 6. Visualization for HyRANK task: (a) Dioni in pseudo-color; (b) Loukia in pseudo-color; (c) Dioni ground-truth map; and (d) Loukia ground-truth
map.

PyTorch framework, we instantiate and execute HyUniDA,
with the computations executed on the GeForce 1080 Ti
GPU. We utilize the same architecture VGG16 as [38] for
all our experiments in this article. The classifier includes
two fully-connected layers adhering to the design of existing
studies [48], [52]. The optimization process involves utilizing
Nesterov momentum stochastic gradient descent (SGD) that
takes a momentum at 0.9 and a weight decay parameter
at 0.0005. The patch should be standardized to a size of
12 × 12, with each patch labeled according to the class of its
geometrical center pixel, and the batch size is uniformly set to
128. A dynamic decay mechanism governs the learning rate,
defined by (1 + αν)−β , with parameters α = 10, β = 0.75,
and ν = i/g signifying the linear transition in the training
process, ranging from 0 to 1 in terms of the current iteration
(i) to global iteration (g) ratio. The initial learning rate can be
selected among {0.0001, 0.001, 0.01, 0.1}.

Evaluation Metric: For UniDA, the assessment of effec-
tiveness requires a thoughtful consideration of the accuracy
dynamics common and private categories. Besides report-
ing Class-specific/common/target private/overall classification
accuracies, we also adopt the evaluation protocol H-score
proposed by Fu et al. [63], which compensates for the
per-class accuracy brought about by the previous neglect
on open classes. Jointly assessing the accuracy of common
class (aC) and target private class (aCt

), the H-score offers a
comprehensive performance measure. It can be computed as
follows:

H-score = 2 ×
aC × aCt

aC + aCt

. (16)

Peak in this assessment hinges on the simultaneous increasing
of both aC and aCt

, highlighting the proficiency in recognizing
common and private samples.

B. Comparison Methods

To establish a comprehensive performance baseline,
we incorporate a diverse set of state-of-the-art (SOTA) DA
algorithms for comparison, highlighting the inclusion of two
closed set DA methodologies, notably the domain-adversarial
neural network (DANN) [64] and CDAN [37], one partial
DA method (partial adversarial domain adaptation (PADA)
[46]), one open set DA method (open set domain adap-
tation by backpropagation (OSBP) [65]), and four UniDA

methods (UAN [48], DANCE [51], UniOT [52], and UniDA
for remote sensing image scene classification (MA) [53]).
Closed-set DA is difficult to accurately classify target pri-
vate classes, according to its setting. Softmax regression is
used to allocate diverse labels to the target domain, and
the label with the highest probability is assigned to the
target sample. When the probability of all known labels
is below the threshold, we set it to unknown, i.e., target
private. In addition, we include the Baseline model in our
evaluation, which serves as a reference point for comparison.
It should be emphasized that the Baseline model exclu-
sively utilizes classification loss without incorporating any DA
techniques.

Both source and target spectral data are row normalized
using the L2-norm during training and testing prior to network
training. Tables IV–VI provide the common classes accu-
racy, target private accuracy, overall accuracy, and H-score
in aforementioned methods for three target scenes, along
with the classification accuracy for individual classes. We
also list the average accuracy and standard deviation of the
proposed method. The common class accuracy refers to the
accuracy of those classes that appear in both the source and
target domains, that is, the proportion of correctly identified
common class samples to the total number of common class
samples. Our HyUniDA exhibits superior performance across
all benchmarks, leading in both overall accuracy and H-score.
For closed-set DA methods, both comparison methods exhibit
higher overall accuracy than Baseline, and most of them out-
perform the Baseline in terms of H-score, except for CDAN in
Houston dataset (−0.1%) and DANN in HyRANK (−0.11%).
DANN demonstrates high accuracy in specific categories, such
as 76.66% for Residential buildings in Houston and 98.20%
for Shadow in Pavia. OSBP scores highest for the accuracy
of private samples within the target domain among the Pavia
dataset. As for partial and open set DA, the algorithm may
perform worse H-score than the naive Baseline, such as PADA
in Houston dataset (−0.44%) and OSBP in HyRANK dataset
(−8.36%), demonstrating a substantial negative transfer effect
(TE) under the UniDA setting. While UniDA approaches yield
superior results, it is important to note that negative transfer
was still present. A surprising finding is that, as a recent
SOTA method, UniOT demonstrates inferior performance
in the UniDA scenario of HSI cross-domain classification,
with H-score testing 3.08% lower than the Baseline in the

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 29,2024 at 13:01:23 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: HyUniDA: BREAKING LABEL SET CONSTRAINTS FOR UNIVERSAL DOMAIN ADAPTATION 5518415

TABLE IV
CLASSIFICATION ACCURACY METRICS, INCLUDING CLASS-SPECIFIC, COMMON, TARGET PRIVATE, OVERALL ACCURACY, AND H-SCORE (%), FOR

VARIOUS SOTA DA METHODS EVALUATED FROM HOUSTON2013 TO THE TARGET SCENARIO HOUSTON2018

TABLE V
CLASSIFICATION ACCURACY METRICS, INCLUDING CLASS-SPECIFIC, COMMON, TARGET PRIVATE, OVERALL ACCURACY, AND H-SCORE (%), FOR

VARIOUS SOTA DA METHODS EVALUATED FROM PAVIA CENTER TO THE TARGET SCENARIO UNIVERSITY

TABLE VI
CLASSIFICATION ACCURACY METRICS, INCLUDING CLASS-SPECIFIC, COMMON, TARGET PRIVATE, OVERALL ACCURACY, AND H-SCORE (%), FOR

VARIOUS SOTA DA METHODS EVALUATED FROM HYRANK DIONI TO THE TARGET SCENARIO LOUKIA

HyRANK dataset, and overall performance is even worse
than that of closed set DA. The MA model designed for
remote sensing RGB images also performed poorly, with an
H-score of 38.30%. DANCE emerges as the most efficient
of the three UniDA comparison methods we selected, with
the highest accuracy of 54.13% for common classes in the
Houston dataset. However, our proposed HyUniDA achieves
the highest overall accuracy of 60.79%, 63.07%, and 57.64%
and the highest H-score of 63.22%, 61.59%, and 64.50%
for Houston, Pavia, and HyRANK, respectively, with notable
gains (12.86%–38.39%) compared to the Baseline. Further-
more, compared with other SOTA methods, the HyUniDA
attains 6.92%–13.30%, 4.65%–28.78%, and 7.08%–34.49%
improvement with respect of H-score for these three HSI target
scenarios.

Figs. 7–9 show the classification maps of each comparison
algorithm for target scenarios Houston2018, Pavia University,

and HyRANK Loukia, respectively. Within the depicted maps,
pixels with labeling reflect the predicted class of ground
objects, while the unlabeled ones indicate the background
or ignored class. The black rectangles circle some key areas
to demonstrate the superiority of the HyUniDA. Evidently,
our proposed HyUniDA algorithm exhibits decreased noise
and heightened precision in specific regions on classification
maps. For instance, the third class (Trees) in the Houston2018,
both the Tree and Asphalt classes in the Pavia University,
and the Dense Urban Fabric class in the HyRANK Loukia,
HyUniDA shows remarkable noise reduction and improved
accuracy, outperforming other SOTA comparison methods.
The proposed HyUniDA stands out for its precise capture of
private samples within the target domain. It demonstrates the
capability to correctly classify a greater number of samples,
thereby enhancing the overall consistency between the gen-
erated classification maps and the ground-truth maps. This
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Fig. 7. Classification maps from source domain for the target scenario Houston2018 produced by multiple methods, encompassing (a) Baseline, (b) DANN,
(c) CDAN, (d) PADA, (e) OSBP, (f) UAN, (g) DANCE, (h) UniOT, (i) MA, and (j) HyUniDA (Ours).

Fig. 8. Classification maps from source domain for the target scenario Pavia University produced by multiple methods, encompassing (a) Baseline, (b) DANN,
(c) CDAN, (d) PADA, (e) OSBP, (f) UAN, (g) DANCE, (h) UniOT, (i) MA, and (j) HyUniDA (Ours).

proficiency in capturing target-domain-specific information
establishes HyUniDA as a robust and effective approach for
cross-scene HSI classification tasks.

C. Ablation Studies
For validation and assessment of the HyUniDA’s efficacy,

we conducted a series of ablation experiments aimed at gaining
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Fig. 9. Classification maps from source domain for the target scenario HyRANK Loukia produced by multiple methods, encompassing: (a) Baseline;
(b) DANN; (c) CDAN; (d) PADA; (e) OSBP; (f) UAN; (g) DANCE; (h) UniOT; (i) MA; and (j) HyUniDA (Ours). Source private refers to Sparsely Vegetated
Areas or Rocks and Sand, and target private refers to Water or Coastal Water.

in-depth insights into the contributions of individual compo-
nents to overall performance. These experiments encompass
the impacts of SSP, the effect of different loss functions, sen-
sitivity to hyperparameters, and the robustness in the realistic
UniDA setting. Sections IV-C1–IV-C4 will provide a detailed
presentation of results from each ablation experiment and their
implications for the performance of the proposed model.

1) Effectiveness of the SSP: We delve into the investigation
of the SSP mechanism and its influence on the optimization
process. Fig. 10 illustrates the dynamic evolution of the
number of clusters (K ) during the training process across three
distinct scenarios. These experiments intentionally omit the
use of the proposed stopping criteria outlined in Section II-C.
Fig. 10 depicts the convergence process of the cluster numbers,
ultimately stabilizing at an optimal value through a few initial
attempts. This convergence pattern aligns with the behavior in
the DSS evolution. This finding indicates that the exploration
of K is crucial in the early stages of training; our method
efficiently reaches a stable and optimal value for the number
of clusters, which provides empirical support for the efficiency
of the stopping criteria offered.

2) Effectiveness of the LTD and LCDD: The analysis of LTD
and LCDD contributions involves training the model separately
using each term, as detailed in Table VII. When considering
simply the cross-entropy loss across source domain (LSD), the
model exhibits moderate performance, with accuracy ranging

Fig. 10. Evolution of cluster as training progresses.

from 42.68% to 50.88% and H-score from 38.22% to 52.84%
across the three tasks. The introduction of LTD leads to
improvements in both accuracy and H-score, indicating the
effectiveness of the target-domain loss in aligning the model
with the features of the target domain. This enhancement is
particularly evident in TaskC, where the accuracy jumps from
50.56% to 57.83%, and the H-score increases from 54.25%
to 60.77%. The LCDD further enhances the performance of
the HyUniDA by addressing the contrastive domain discrep-
ancies, with improvements in accuracy and H-score observed
across almost all tasks. For TaskB, the overall accuracy
and H-score raised by 4.19% and 3.53%, respectively, after
the implementation of LCDD, as opposed to LTD. The best
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Fig. 11. Sensitivity to hyperparameters. (a) and (b) Impact of λ (ranging from 0 to 0.4) on overall accuracy and H-score, respectively, with fixed ω = 3.
(c) and (d) Impact of ω (ranging from 1 to 5) on overall accuracy and H-score, respectively, with fixed λ = 0.1.

TABLE VII
EVALUATION OF THE EFFECTIVENESS OF THE LOSS COMPONENT, WHERE

TaskA IS FROM SOURCE SCENE HOUSTON2013 TO TARGET SCENE
HOUSTON2018; TaskB IS FROM PAVIA CENTER TO PAVIA

UNIVERSITY; AND TaskC IS FROM
HYRANK DIONI TO LOUKIA

performance for all tasks is achieved when all three loss terms
are turned on, indicating that they are complementary and
beneficial for the UniDA scenarios. This comprehensive anal-
ysis emphasizes the benefits of incorporating target-domain
loss and CDD loss alongside the source-domain loss, affirm-
ing their effectiveness in promoting DA performance across
diverse HSI classification tasks.

3) Sensitivity to Hyperparameters: We carry out sensitivity
analysis on two crucial hyperparameters, namely, λ and ω.
Fig. 11 depicts the performance of the overall accuracy and
H-score corresponding to the variations of these hyperparam-
eters. Setting ω to 3, we assess the overall accuracy and
H-score of parameter λ across a range of 0–0.4, as depicted
in Fig. 11(a) and (b), respectively. As can be noticed, the
configuration with λ = 0.1 outperforms alternative settings,
demonstrating a significant enhancement. When the value of
λ exceeds 0.3, the H-score experiences a sharp decline, except
for the HyRANK dataset. For λ fixed at 0.1, the overall
accuracy and H-score of ω are assessed across a range of 1–5,
as depicted in Fig. 11(c) and (d), respectively. When adjusting
the value of ω, the overall accuracy remains relatively stable.
However, when ω = 2, it significantly deteriorates the H-score.
It should be noted that these two hyperparameters exert
varying degrees of influence on each test HSI dataset. Based
on our findings, we set up an optimal set of hyperparameters
for all our tasks: λ = 0.1 and ω = 3.

4) Robustness in Realistic UniDA: In a real cross-domain
HSI classification scenario, the sample class of the target
domain is completely unknown, thus resulting in a multitude
of class splits. To assess the robustness of our proposed
HyUniDA in realistic UniDA, we carry out experiments
with the HyRANK dataset, considering diverse proportions
of common classes. Table VIII presents an overview of the
findings, where C represents the number of common classes,

TABLE VIII
ROBUSTNESS IN REALISTIC UNIDA WITH DIVERSE RATIOS OF

COMMON CLASSES FOR THE TARGET SCENE HYRANK
LOUKIA DATA. DIFFERENT CLASS SPLITS C/Cs/Ct
REVEAL DIVERSE RATIOS OF COMMON CLASSES

and Cs and Ct are the number of private categories for
source and target domains, respectively. It is observed that
HyUniDA consistently maintains high overall accuracy and
H-score across different splits, showcasing robust generaliza-
tion capabilities toward shared classes. The overall accuracy
ranges from 57.54% to 61.88%, and the H-score varies from
59.48% to 69.15%. Regarding target private classes, HyUniDA
exhibits outstanding performance, with the accuracy of more
than 85.18%. This means that HyUniDA is very effective
for feature learning in the target domain and can accurately
distinguish target private samples. Unfortunately, when Ct ≥ 2,
the target domain contains numerous private samples unseen in
the source domain. The model struggles to accurately predict
each private category, and so only the mean accuracy of target
private classes can be presented. In general, the proposed
HyUniDA achieves significant overall accuracy and H-score
under various class splits, which demonstrated its robustness
and excellent performance in handling real UniDA scenarios.

V. DISCUSSION

The HyUniDA we proposed in cross-scene HSI classifica-
tion addresses a crucial and practical challenge in the remote
sensing community, specifically in scenarios where the label
set for target domain becomes completely unknown, i.e., pri-
vate classes may exist in both domains. This section focuses
on TE of the practical application scenarios and limitations.

A. TE of Practical Application Scenarios

UniDA poses a pragmatic and intricate transfer challenge.
In real-world scenarios, a multitude of situations exists where
the source and target samples exhibit inconsistencies. Exam-
ples include the challenge of using models trained in urban
areas to map land cover in rural landscapes, where there
are private samples in both domains (e.g., buildings andAuthorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 29,2024 at 13:01:23 UTC from IEEE Xplore.  Restrictions apply. 
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infrastructure in urban areas, and cropland in rural areas).
We define the TE as the effectiveness disparity of DA models
compared to the Baseline

TE = H-scoreDA − H-scoreBaseline. (17)

TE < 0 denotes that the DA method exhibits a negative TE in
the UniDA scenario without any improvement. Notably, when
confronted with scenarios where the target-domain label set
remains completely undisclosed, traditional DA methods may
struggle, leading to unsatisfactory performance. Tables IV–VI
indicate that the existing methods have some negative transfer
phenomena, such as CDAN (−0.1%) and PADA (−0.44%) in
the Houston dataset, and DANN (−0.11%), OSBP (−8.36%),
and UniOT (−3.08%) in the HyRANK dataset. For HyRANK
datasets, the types of ground objects are complex, and the
land cover is diverse, so the spectral differences between
Dioni and Loukia may be quite large. Spectral and spatial
differences between the source domain and the target domain
lead to feature shifts. In the UniDA scenario, the label set
of the target domain is unknown, which makes the closed-set
DA methods or UniDA methods for general datasets perform
poorly when dealing with unlabeled target HSI data. Both the
source domain and the target domain have private samples,
making the model difficult to generalize. Our newly intro-
duced HyUniDA stands out among other SOTA DA methods,
achieving remarkable advancements in handling the issue of
cross-scene HSI classification and filling the gap of UniDA in
the remote sensing community.

HyUniDA breaks the label set constraints for the first
attempt to tackle the UniDA scenario, specifically from HSIs.
It consists of the SSP and DSS. SSP effectively identifies
cluster pairs with coincident semantic features, allowing for
more accurate identification of common classes across differ-
ent scenes. This innovation addresses the inherent challenge
of inconsistent label spaces in cross-scene HSI classification.
The introduction of DSS is a unique aspect of HyUniDA that
contributes significantly to its performance. DSS not only esti-
mates the number of target clusters but also generates distinct
clusters without prior knowledge. This capability enhances the
model’s adaptability in HSI classification, particularly when
dealing with datasets characterized by varying degrees of
complexity and diversity. By incorporating CDD, HyUniDA
effectively alleviates sample distribution offsets. This aspect
is crucial in HSI classification, where differences in sample
distributions across different scenes can significantly impact
classification accuracy. The regularizer introduced for effective
target-domain cluster distinction further enhances the robust-
ness and efficacy of the proposed framework.

B. Limitations and Future Works

While HyUniDA exhibits promising performance, it is
essential to address its limitations for a more comprehensive
understanding. One constraint lies in its sensitivity to hyperpa-
rameters. The effectiveness of HyUniDA may be affected by
the chosen hyperparameters, requiring fine-tuning for optimal
performance. Moreover, the HyUniDA may exhibit inade-
quate performance in cases where the feature shift between

the source and target domains is significant, or the label
distribution is extremely unbalanced. Our model performed
poorly for Fruit Trees and Coniferous Forest in the HyRANK
datasets, as did other SOTA methods like DANCE (5.06%)
and UniOT (7.59%) for Fruit Trees. The MA model designed
for remote sensing has low classification accuracy on many
categories, such as HyRANK classes 1, 2, and 5. The accuracy
of previous SOTA methods is below expectations for the Brick
of Pavia dataset. UniOT achieved only 2.04%, CDAN 5.13%,
and PADA 6.57%.

Future works should focus on refining the method’s sen-
sitivity to hyperparameters, exploring methods to automate
hyperparameter tuning. Augmenting training data and bal-
ancing class representation can mitigate the impact of data
imbalance. Strategies like oversampling minority classes or
introducing synthetic samples may enhance model robust-
ness. Employing DA techniques tailored for HSI could
tackle challenges from domain shifts. Techniques involve
domain-invariant feature learning or domain adversarial train-
ing. A more in-depth analysis of the spectral features
associated with low-accuracy classes may reveal specific chal-
lenges. Additionally, strategies to improve recognition for rare
private classes in the target domain should be a priority for
further research. These efforts will contribute to enhancing
the effectiveness and applicability of HyUniDA in diverse and
challenging scenarios.

VI. CONCLUSION

In this article, we are the first to discuss cross-scene HSI
classification under UniDA scenario, where we transfer knowl-
edge among domains without restrictions of the label space.
We propose a UniDA framework based on the SSP and DSS
for cross-scene HSI classification, namely, HyUniDA. The SSP
identifies cluster pairs with similar semantic features as the
common classes, and the DSS calculates the number of target
cluster and discovers the private classes from the sample level.
Without any preset threshold values, the inherent difference
between common and private classes can be automatically
detected based on the DSS values of the cluster pairs acquired
from the SSP. Furthermore, the CDD is utilized to minimize
any distributional bias in the samples, while a prototype
regularizer is adopted to promote the separation of target-
domain clusters. Our HyUniDA has demonstrated superior
performance across three transfer learning tasks for six typical
HSI datasets, substantiating its dominance over a wide range
of SOTA algorithms.

REFERENCES

[1] Y. Zhang, W. Li, R. Tao, J. Peng, Q. Du, and Z. Cai, “Cross-scene hyper-
spectral image classification with discriminative cooperative alignment,”
IEEE Trans. Geosci. Remote Sens., vol. 59, no. 11, pp. 9646–9660,
Nov. 2021.

[2] X. Kang, Z. Wang, P. Duan, and X. Wei, “The potential of hyper-
spectral image classification for oil spill mapping,” IEEE Trans.
Geosci. Remote Sens., vol. 60, pp. 1–15, 2022, Art. no. 5538415, doi:
10.1109/TGRS.2022.3205966.

[3] R. Näsi et al., “Remote sensing of bark beetle damage in urban forests
at individual tree level using a novel hyperspectral camera from UAV
and aircraft,” Urban Forestry Urban Greening, vol. 30, pp. 72–83,
Mar. 2018.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 29,2024 at 13:01:23 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TGRS.2022.3205966


5518415 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

[4] J. Liu et al., “Estimating the forage neutral detergent fiber con-
tent of alpine grassland in the Tibetan Plateau using hyperspec-
tral data and machine learning algorithms,” IEEE Trans. Geosci.
Remote Sens., vol. 60, pp. 1–17, 2022, Art. no. 4405017, doi:
10.1109/TGRS.2021.3105482.

[5] J. Zheng et al., “Surveying coconut trees using high-resolution satellite
imagery in remote atolls of the Pacific ocean,” Remote Sens. Environ.,
vol. 287, Mar. 2023, Art. no. 113485.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[7] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2017, pp. 4700–4708.

[8] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2018, pp. 7132–7141.

[9] W. Huang, Y. Shi, Z. Xiong, Q. Wang, and X. X. Zhu, “Semi-supervised
bidirectional alignment for remote sensing cross-domain scene classifi-
cation,” ISPRS J. Photogramm. Remote Sens., vol. 195, pp. 192–203,
Jan. 2023.

[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017,
doi: 10.1109/TPAMI.2016.2577031.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[12] H. Law and J. Deng, “CornerNet: Detecting objects as paired keypoints,”
in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 734–750.

[13] J. Zheng et al., “Growing status observation for oil palm trees using
unmanned aerial vehicle (UAV) images,” ISPRS J. Photogramm. Remote
Sens., vol. 173, pp. 95–121, Mar. 2021.

[14] R. Zhu and L. Zhuang, “Unsupervised infrared small-object-detection
approach of spatial–temporal patch tensor and object selection,” Remote
Sens., vol. 14, no. 7, p. 1612, Mar. 2022.

[15] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and
D. Terzopoulos, “Image segmentation using deep learning: A survey,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 7, pp. 3523–3542,
Jul. 2021.

[16] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder–decoder architecture for image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495,
Dec. 2017.

[17] Z. Tian, H. Zhao, M. Shu, Z. Yang, R. Li, and J. Jia, “Prior guided
feature enrichment network for few-shot segmentation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 44, no. 2, pp. 1050–1065, Aug. 2020.

[18] W. Huang, Y. Shi, Z. Xiong, and X. X. Zhu, “AdaptMatch: Adaptive
matching for semisupervised binary segmentation of remote sensing
images,” IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1–16, 2023,
Art. no. 5625416, doi: 10.1109/TGRS.2023.3332490.

[19] N. Wambugu et al., “Hyperspectral image classification on insufficient-
sample and feature learning using deep neural networks: A review,” Int.
J. Appl. Earth Observ. Geoinf., vol. 105, Dec. 2021, Art. no. 102603.

[20] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson,
“Deep learning for hyperspectral image classification: An overview,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 9, pp. 6690–6709,
Sep. 2019.

[21] L. He, J. Li, C. Liu, and S. Li, “Recent advances on spectral–spatial
hyperspectral image classification: An overview and new guidelines,”
IEEE Trans. Geosci. Remote Sens., vol. 56, no. 3, pp. 1579–1597,
Mar. 2017.

[22] H. Wu and S. Prasad, “Semi-supervised deep learning using pseudo
labels for hyperspectral image classification,” IEEE Trans. Image Pro-
cess., vol. 27, no. 3, pp. 1259–1270, Mar. 2018.

[23] Y. Chen, S. Song, S. Li, L. Yang, and C. Wu, “Domain space transfer
extreme learning machine for domain adaptation,” IEEE Trans. Cybern.,
vol. 49, no. 5, pp. 1909–1922, May 2019.

[24] X. Ma, X. Mou, J. Wang, X. Liu, H. Wang, and B. Yin, “Cross-data set
hyperspectral image classification based on deep domain adaptation,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 12, pp. 10164–10174,
Dec. 2019.

[25] A. Storkey et al., “When training and test sets are different: Character-
izing learning transfer,” Dataset Shift Mach. Learn., vol. 30, nos. 3–28,
p. 6, 2009.

[26] Q. Zhu et al., “A spectral–spatial-dependent global learning framework
for insufficient and imbalanced hyperspectral image classification,” IEEE
Trans. Cybern., vol. 52, no. 11, pp. 11709–11723, Nov. 2022.

[27] Y. Qin, L. Bruzzone, and B. Li, “Tensor alignment based domain
adaptation for hyperspectral image classification,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 11, pp. 9290–9307, Nov. 2019.

[28] S. Nirmal, V. Sowmya, and K. Soman, “Open set domain adaptation
for hyperspectral image classification using generative adversarial net-
work,” in Proc. Inventive Commun. Comput. Technol. (ICICCT). Cham,
Switzerland: Springer, 2020, pp. 819–827.

[29] J. Zheng, W. Wu, S. Yuan, H. Fu, W. Li, and L. Yu, “Multisource-
domain generalization-based oil palm tree detection using very-high-
resolution (VHR) satellite images,” IEEE Geosci. Remote Sens. Lett.,
vol. 19, pp. 1–5, 2022.

[30] Q. Zhu et al., “Land-use/land-cover change detection based on a Siamese
global learning framework for high spatial resolution remote sensing
imagery,” ISPRS J. Photogramm. Remote Sens., vol. 184, pp. 63–78,
Feb. 2022.

[31] W. M. Kouw and M. Loog, “A review of domain adaptation without
target labels,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 3,
pp. 766–785, Mar. 2021.

[32] R. Zhu, L. Yan, N. Mo, and Y. Liu, “Semi-supervised center-based
discriminative adversarial learning for cross-domain scene-level land-
cover classification of aerial images,” ISPRS J. Photogramm. Remote
Sens., vol. 155, pp. 72–89, Sep. 2019.

[33] X. Liu et al., “Adversarial unsupervised domain adaptation with condi-
tional and label shift: Infer, align and iterate,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 10367–10376.

[34] J. Zheng et al., “A two-stage adaptation network (TSAN) for
remote sensing scene classification in single-source-mixed-multiple-
target domain adaptation (S2M2T DA) scenarios,” IEEE Trans. Geosci.
Remote Sens., vol. 60, pp. 1–13, 2022, Art. no. 5609213, doi:
10.1109/TGRS.2021.3105302.

[35] H. Yan, Y. Ding, P. Li, Q. Wang, Y. Xu, and W. Zuo, “Mind the class
weight bias: Weighted maximum mean discrepancy for unsupervised
domain adaptation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2017, pp. 2272–2281.

[36] Z. Pei, Z. Cao, M. Long, and J. Wang, “Multi-adversarial domain
adaptation,” in Proc. AAAI, Apr. 2018, vol. 32, no. 1, pp. 3934–3941,
doi: 10.1609/aaai.v32i1.11767.

[37] M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Conditional adversarial
domain adaptation,” in Proc. Adv. Neural Inf. Process. Syst., vol. 31,
2018.

[38] Y. Zhang, W. Li, M. Zhang, Y. Qu, R. Tao, and H. Qi, “Topo-
logical structure and semantic information transfer network for
cross-scene hyperspectral image classification,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 34, no. 6, pp. 2817–2830, Jun. 2023, doi:
10.1109/TNNLS.2021.3109872.

[39] Y. Zhang, W. Li, W. Sun, R. Tao, and Q. Du, “Single-source domain
expansion network for cross-scene hyperspectral image classification,”
IEEE Trans. Image Process., vol. 32, pp. 1498–1512, 2023.

[40] C. Deng, X. Liu, C. Li, and D. Tao, “Active multi-kernel domain
adaptation for hyperspectral image classification,” Pattern Recognit.,
vol. 77, pp. 306–315, May 2018.

[41] H. Wang, X. Wang, C. L. P. Chen, and Y. Cheng, “Hyperspectral image
classification based on domain adaptation broad learning,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 3006–3018, 2020.

[42] J. Zheng et al., “Cross-regional oil palm tree counting and detection via a
multi-level attention domain adaptation network,” ISPRS J. Photogramm.
Remote Sens., vol. 167, pp. 154–177, Sep. 2020.

[43] J. Yue, L. Fang, and M. He, “Spectral–spatial latent reconstruction
for open-set hyperspectral image classification,” IEEE Trans. Image
Process., vol. 31, pp. 5227–5241, 2022.

[44] Z. Xie, P. Duan, W. Liu, X. Kang, X. Wei, and S. Li, “Feature
consistency-based prototype network for open-set hyperspectral image
classification,” IEEE Trans. Neural Netw. Learn. Syst., early access,
Jan. 6, 2023, doi: 10.1109/TNNLS.2022.3232225.

[45] J. Zheng et al., “Open-set domain adaptation for scene classification
using multi-adversarial learning,” ISPRS J. Photogramm. Remote Sens.,
vol. 208, pp. 245–260, Feb. 2024.

[46] Z. Cao, L. Ma, M. Long, and J. Wang, “Partial adversarial domain
adaptation,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 135–150.

[47] J. Zheng, Y. Zhao, W. Wu, M. Chen, W. Li, and H. Fu, “Partial domain
adaptation for scene classification from remote sensing imagery,” IEEE
Trans. Geosci. Remote Sens., vol. 61, pp. 1–17, 2023, Art. no. 5601317,
doi: 10.1109/TGRS.2022.3229039.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 29,2024 at 13:01:23 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TGRS.2021.3105482
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/TGRS.2023.3332490
http://dx.doi.org/10.1109/TGRS.2021.3105302
http://dx.doi.org/10.1609/aaai.v32i1.11767
http://dx.doi.org/10.1109/TNNLS.2021.3109872
http://dx.doi.org/10.1109/TNNLS.2022.3232225
http://dx.doi.org/10.1109/TGRS.2022.3229039


LI et al.: HyUniDA: BREAKING LABEL SET CONSTRAINTS FOR UNIVERSAL DOMAIN ADAPTATION 5518415

[48] K. You, M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Universal domain
adaptation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2019, pp. 2720–2729.

[49] G. Li, G. Kang, Y. Zhu, Y. Wei, and Y. Yang, “Domain consensus
clustering for universal domain adaptation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 9757–9766.

[50] J. Guo et al., “C3DA: A universal domain adaptation method for scene
classification from remote sensing imagery,” IEEE Geosci. Remote Sens.
Lett., vol. 21, pp. 1–5, 2024.

[51] K. Saito, D. Kim, S. Sclaroff, and K. Saenko, “Universal domain
adaptation through self supervision,” in Proc. NIPS, vol. 33, 2020,
pp. 16282–16292.

[52] W. Chang, Y. Shi, H. Tuan, and J. Wang, “Unified optimal transport
framework for universal domain adaptation,” in Proc. Adv. Neural Inf.
Process. Syst., 2022, pp. 29512–29524.

[53] Q. Xu, Y. Shi, X. Yuan, and X. X. Zhu, “Universal domain adap-
tation for remote sensing image scene classification,” IEEE Trans.
Geosci. Remote Sens., vol. 61, pp. 1–15, 2023, Art. no. 4700515, doi:
10.1109/TGRS.2023.3235988.

[54] Y. Zhang, W. Li, M. Zhang, S. Wang, R. Tao, and Q. Du, “Graph infor-
mation aggregation cross-domain few-shot learning for hyperspectral
image classification,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35,
no. 2, pp. 1912–1925, Feb. 2024, doi: 10.1109/TNNLS.2022.3185795.

[55] Z. Fang et al., “Confident learning-based domain adaptation for hyper-
spectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 5527116.

[56] A. E. Ezugwu et al., “A comprehensive survey of clustering algorithms:
State-of-the-art machine learning applications, taxonomy, challenges,
and future research prospects,” Eng. Appl. Artif. Intell., vol. 110,
Apr. 2022, Art. no. 104743.

[57] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola,
“A kernel method for the two-sample-problem,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 19, 2006.

[58] G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann, “Contrastive adapta-
tion network for unsupervised domain adaptation,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2019, pp. 4893–4902.

[59] G. Kang, L. Jiang, Y. Wei, Y. Yang, and A. Hauptmann, “Contrastive
adaptation network for single- and multi-source domain adaptation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 4, pp. 1793–1804,
Apr. 2022.

[60] C. Debes et al., “Hyperspectral and LiDAR data fusion: Out-
come of the 2013 GRSS data fusion contest,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2405–2418,
Jun. 2014.

[61] B. Le Saux, N. Yokoya, R. Hansch, and S. Prasad, “2018 IEEE
GRSS data fusion contest: Multimodal land use classification [technical
committees],” IEEE Geosci. Remote Sens. Mag., vol. 6, no. 1, pp. 52–54,
Mar. 2018.

[62] K. Karantzalos, C. Karakizi, Z. Kandylakis, and G. Antoniou,
“HyRANK hyperspectral satellite dataset I (version v001),” Int. Soc.
Photogramm. Remote Sens., Tech. Rep., 2018, doi: 10.5281/zen-
odo.1222202.

[63] B. Fu, Z. Cao, M. Long, and J. Wang, “Learning to detect open classes
for universal domain adaptation,” in Proc. Eur. Conf. Comput. Vis.
(ECCV). Cham, Switzerland: Springer, 2020, pp. 567–583.

[64] Y. Ganin et al., “Domain-adversarial training of neural networks,”
J. Mach. Learn. Res., vol. 17, no. 1, pp. 2030–2096, Apr. 2016.

[65] K. Saito, S. Yamamoto, Y. Ushiku, and T. Harada, “open set domain
adaptation by backpropagation,” in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2018, pp. 153–168.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 29,2024 at 13:01:23 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TGRS.2023.3235988
http://dx.doi.org/10.1109/TNNLS.2022.3185795
http://dx.doi.org/10.5281/zenodo.1222202
http://dx.doi.org/10.5281/zenodo.1222202

