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 A B S T R A C T

Unsupervised Domain Adaptation (UDA) has emerged as a powerful technique for addressing the distribution 
shift across various Remote Sensing (RS) applications. However, most UDA approaches require access to source 
data, which may be infeasible due to data privacy or transmission constraints. Source-free Domain Adaptation 
addresses the absence of source data but usually demands a large amount of target domain data beforehand, 
hindering rapid adaptation and restricting their applicability in broader scenarios. In practical cross-domain 
RS image classification, achieving a balance between adaptation speed and accuracy is crucial. Therefore, 
we propose Low Saturation Confidence Distribution Test-Time Adaptation (LSCD-TTA), marketing the first 
attempt to explore Test-Time Adaptation for cross-domain RS image classification without requiring source 
or target training data. LSCD-TTA adapts a source-trained model on the fly using only the target test data 
encountered during inference, enabling immediate and efficient adaptation while maintaining high accuracy. 
Specifically, LSCD-TTA incorporates three optimization strategies tailored to the distribution characteristics 
of RS images. Firstly, weak-confidence softmax-entropy loss emphasizes categories that are more difficult to 
classify to address unbalanced class distribution. Secondly, balanced-categories softmax-entropy loss softens 
and balances the predicted probabilities to tackle the category diversity. Finally, low saturation distribution 
loss utilizes soft log-likelihood ratios to reduce the impact of low-confidence samples in the later stages of 
adaptation. By effectively combining these losses, LSCD-TTA enables rapid and accurate adaptation to the 
target domain for RS image classification. We evaluate LSCD-TTA on six domain adaptation tasks across three 
RS datasets, where LSCD-TTA outperforms existing DA and TTA methods with average accuracy gains of 4.99% 
on Resnet-50, 5.22% on Resnet-101,  and 2.37% on ViT-B/16.
1. Introduction

Deep learning has demonstrated remarkable potential in Remote 
Sensing (RS) image classification tasks, excelling in efficiently and ef-
fectively extracting feature information from RS images (Li et al., 2019; 
Teng et al., 2019; Zheng et al., 2024b). However, models trained on the 
source domain often experience significant performance degradation 
when applied to a target domain with a different distribution—a prob-
lem known as distribution shift (Geirhos et al., 2018). This challenge is 
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compounded in RS imagery due to its diversity in land categories, high 
information density, and variable meteorological conditions.

As shown in Fig.  1, Unsupervised Domain Adaptation (UDA) has 
gradually developed to address the distribution shift  between source 
and target domains by leveraging techniques such as adversarial learn-
ing (Lee et al., 2019; Zheng et al., 2020, 2024a) and feature align-
ment (Zhang et al., 2022; Wei et al., 2021; Li et al., 2024).  Similarly, 
Domain Generalization (DG) aims to train a model that generalizes 
well to multiple unseen target domains by learning from multiple 
source domains (Muandet et al., 2013; Zheng et al., 2021a; Liang 
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Fig. 1. Comparisons of different domain adaptation methods for remote sensing image classification.
et al., 2024).  Nevertheless, UDA  and DG methods are constrained by 
their dependence on source data. In many RS scenarios, where data 
privacy is a concern (e.g., military monitoring and resource detection), 
data privacy concerns make accessing source data impractical, creating 
significant obstacles for UDA  and DG methods.

To overcome this limitation, Source-free Domain Adaptation (SFDA) 
has been introduced within the RS community (Xu et al., 2022; Liu 
et al., 2024), enabling the adaptation of source-trained models to target 
training data without requiring access to the source data. Despite this 
advancement, typical SFDA methods still adhere to the conventional 
train–test paradigm, where models are trained on considerable target 
data and remain fixed during testing. This process necessitates multiple 
iterations to progressively align with the target distribution, which 
is time-consuming and unsuitable for real-world RS applications that 
demand rapid and robust adaptation. For example, UAV-based disas-
ter monitoring requires models that can quickly adjust to changing 
conditions across diverse regions (Jiang et al., 2022). Consequently, tra-
ditional Domain Adaptation (DA) models struggle to meet urgent and 
real-time demands, remaining limited by offline learning constraints.

Test-Time Adaptation (TTA) has recently emerged as a promising 
online learning method to directly adapt the source-trained model to 
target test data during inference (Wang et al., 2020).  This process does 
not require access to source domain datasets or substantial amounts of 
target data for pre-training, making it particularly suitable for scenarios 
where immediate adaptation is crucial and data accessibility is limited. 
Existing TTA methods concentrate mostly on self-supervised learning 
methods (Mummadi et al., 2021) and optimization-based strategy (Niu 
et al., 2023; Boudiaf et al., 2022) in the computer vision domain. For 
example, Boudiaf et al. (2022) employ an efficient concave procedure 
2 
and Laplace optimization to adjust the maximum likelihood estima-
tion objective, addressing uncertainty during testing. Although classic 
TTA approaches have demonstrated adaptability to changing data, 
they have primarily been validated on artificially corrupted datasets 
(e.g., CIFAR10-C (Hendrycks and Dietterich, 2019)). These conditions 
differ significantly from real-world RS scenarios characterized by mul-
tiple cross-domain styles, high information density, variable mete-
orological environments, and large-scale data (Zheng et al., 2023). 
Direct application of existing TTA methods to cross-domain RS image 
classification requires further optimization to address these unique 
challenges.  To date, no work has introduced TTA into RS image classi-
fication tasks, particularly for scenarios demanding high-resolution and 
real-time processing.

Therefore, we propose Low Saturation Confidence Distribution Test-
Time Adaptation (LSCD-TTA) based on the characteristics of RS images. 
LSCD-TTA includes three core optimization strategies designed to ad-
dress the distribution characteristics of RS images, aimed at rapidly and 
accurately adapting to the target domain. Specifically, Weak-confidence 
Softmax-Entropy (WCSE) Loss places greater emphasis on hard-to-
distinguish, weak-category RS samples, enhancing the model’s ability 
to classify these challenging samples with higher accuracy. Moreover, 
Balanced-categories Softmax-Entropy (BCSE) Loss softens the confi-
dence levels across categories by refactoring the predicted probability 
distributions, effectively handling category diversity. Furthermore, Low 
Saturation Distribution (LSD) Loss desaturates the traditional cross-
entropy loss based on soft log-likelihood ratios. The LSD loss miti-
gates the dominance of low-confidence samples during later stages 
of adaptation, preventing them from disproportionately influencing 
model updates. We demonstrate LSCD-TTA’s effectiveness on six DA 
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Fig. 2. The main structure of LSCD-TTA. The model 𝐹𝜃 is first pre-trained on the source domain, which serves as the initialization of 𝐺𝜃 for adaptation toward the target domain. 
The model extracts the features of target test images within the continuous input and calculates the probability distribution using model 𝐺𝜃 during adaptation. Subsequently, 
LSCD-TTA balances the predicted probabilities across categories (i.e. 𝑏𝑐𝑠𝑒) and especially emphasizes low-saturation or week-probability samples that are difficult to distinguish 
(i.e. 𝑙𝑠𝑑 and 𝑤𝑐𝑠𝑒), to align the source and target domains in real time.
tasks across three RS datasets (i.e., AID (Xia et al., 2017), NWPU-
RESISC45 (Cheng et al., 2017), and UC Merced (Yang and Newsam, 
2010)). Experimental results show that LSCD-TTA significantly outper-
forms existing SFDA and TTA methods, achieving average accuracy 
gains of 4.99% with ResNet-50, 5.22% with ResNet-101, and 2.37% 
on ViT-B/16. The method not only improves overall accuracy but 
enhances robustness, making it well-suited for real-world applications 
that require rapid adaptation and high precision.

In summary, the main contributions of this paper are as follows:

1. We propose a TTA method LSCD-TTA for rapid and accurate 
cross-domain RS image classification. To the best of our knowl-
edge, LSCD-TTA is the first attempt to integrate TTA with cross-
domain classification tasks within the RS community.

2. LSCD-TTA introduces WCSE, BCSE, and LSD to enhance low-
confidence sample performance, improve weak category clas-
sification, and mitigate cross-category distribution bias. These 
losses are designed to account for the specific characteristics 
of RS images, which addresses the challenges when directly 
applying classic TTA to RS image data.

3. We conduct extensive experiments and analysis to exhibit the 
superiority of LSCD-TTA on six DA tasks, achieving remarkable 
average accuracy improvements over state-of-the-art SFDA and 
TTA methods of 4.99% with Resnet-50, 5.22% with Resnet-101, 
and  2.37% with ViT-B/16 in average accuracy.

2. Methodology

In this paper, we propose Low Saturation Confidence Distribution 
Test-Time Adaptation (LSCD-TTA), which is designed for cross-scene RS 
image classification tasks. LSCD-TTA includes three losses that consider 
weak-category samples, category diversity, and low saturation respec-
tively (See Fig.  2). By integrating these losses, LSCD-TTA significantly 
enhances the model’s generalization capability to the target domain, 
effectively handling the complexity inherent in cross-scene RS image 
classification.

2.1. Problem preliminaries

Let 𝑠 = {𝑥𝑖𝑠, 𝑦
𝑖
𝑠}

𝑛𝑠
𝑖=1 denote the source domain dataset, where 𝑥𝑖𝑠

represents the input images and 𝑦𝑖  the corresponding labels. Similarly, 
𝑠

3 
let 𝑡 = {𝑥𝑖𝑡}
𝑛𝑡
𝑖=1 denote the target domain dataset, consisting of un-

labeled images 𝑥𝑖𝑡 ∈ 𝑡. Our goal is to adapt a model 𝐺𝜃 ∶  →  , 
initialized by source-trained model 𝐹𝜃 , to perform well on the target 
domain without accessing source data. We aim to adjust the model’s 
parameters 𝜃 during test time using only the unlabeled target data 𝑡, 
enabling the model to generate an accurate mapping 𝐺 ∶ 𝑡 → 𝑡. 
Specifically, given target test data 𝑥𝑖𝑡 at batch i, the model is first to 
make a prediction 𝑦𝑖𝑡 = 𝐺(𝑥𝑖𝑡)

 using the parameters 𝜃𝑖−1 which have 
been updated based on previous target data 𝑥1𝑡 ,… , 𝑥𝑖−1𝑡 . Subsequently, 
𝑦𝑖𝑡 serves as the evaluation output at batch i, and the model will adapt 
itself toward 𝑥𝑖𝑡 as 𝜃𝑖−1 → 𝜃𝑖, which will only influence future inputs 
𝑥𝑖+𝑛𝑡 .

2.2. Parameter iteration

Motivated by Tent (Wang et al., 2020), the foundation work of 
TTA, our approach exclusively updates transformation parameters 𝛾, 𝑏
in batchnorm layers through backpropagation to enable robust and effi-
cient adaptation. Moreover,  the normalized statistics 𝜇, 𝜎 in batchnorm 
layers during the testing process are re-estimated based on target test 
data: 

𝜇𝑡 =
1
𝑛𝑡

𝑛𝑡
∑

𝑖=1
𝑥𝑖𝑡

𝜎2𝑡 = 1
𝑛𝑡

𝑛𝑡
∑

𝑖=1
(𝑥𝑖𝑡 − 𝜇𝑡)2

(1)

Subsequently, for a given input batch 𝑥𝑡, a normalization operation is 
performed on the data: 

𝑥𝑡 =
𝑥𝑡 − 𝜇𝑡
√

𝜎2𝑡 + 𝜖
(2)

In the optimization transformation process of the backpropagation 
stage, the transformation parameters include the scaling parameter 𝛾
and the bias parameter 𝑏 of the Batch Normalization (BN) layer. For 
each input 𝑥𝑡 in the target domain, the output of the BN layer can be 
denoted as: 
𝑦 = 𝛾𝑥𝑡 + 𝑏 (3)

In general, one can compute the gradient of these parameters 𝜕𝜕𝛾 ,
𝜕
𝜕𝑏

by means of the loss function  at the time of testing process, and 
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subsequently back-propagate the gradient to perform the optimization 
of the transformed parameters: 

𝛾 = 𝛾 + 𝜕
𝜕𝛾

𝑏 = 𝑏 + 𝜕
𝜕𝑏

(4)

The normalized statistics of the target domain data and the trans-
formation parameters are iteratively updated at each step of the adap-
tation process. Notably, as mentioned in Section 1, TTA is designed 
within an online learning framework, allowing iterative updates as long 
as the target domain data stream remains continuous.

2.3. Weak-confidence softmax-entropy loss 𝑤𝑐𝑠𝑒

In classical supervised classification tasks, cross-entropy loss is com-
monly used to measure the discrepancy between a model’s predicted 
probability distribution and the ground-truth labels. Let 𝑦𝑔 denote the 
one-hot ground-truth labels and 𝑦 represent the predicted probability 
distribution. The cross-entropy loss 𝐻 is formulated as: 

𝐻(𝑦, 𝑦𝑔) = −
𝐶
∑

𝑐=1
𝑦𝑔𝑐 log 𝑦𝑐 (5)

where 𝐶 denotes the number of categories.
In TTA scenarios, the ground-truth labels for the target data are 

not available. A straightforward strategy is to adopt hard pseudo-
label self-supervision by converting the predicted probability distribu-
tion into one-hot hard pseudo-labels, thus assuming complete trust in 
the model’s predictions. The corresponding hard pseudo-label cross-
entropy loss is: 

𝑦ℎ𝑎𝑟𝑑 =

{

1 if 𝑐 = 𝑐
0 if 𝑐 ≠ 𝑐

𝐻(𝑦, 𝑦ℎ𝑎𝑟𝑑 ) = −
𝐶
∑

𝑐=1
𝑦ℎ𝑎𝑟𝑑𝑐 log 𝑦𝑐 = −𝑦𝑐 log 𝑦𝑐

(6)

where 𝑐 = argmax
𝑐

(𝑦𝑐 ) corresponding to the class with maximal con-
fidence. While this hard pseudo-labeling framework is simple and 
often effective, it disproportionately emphasizes the categories that the 
model is already confident about. This is problematic when the target 
domain exhibits substantial shifts from the source domain, especially in 
RS imagery where certain classes are inherently difficult to distinguish 
due to high inter-class similarity. Consequently, the model’s gradient 
updates might neglect critical information from these hard-to-classify 
samples, resulting in suboptimal adaptation.

The soft pseudo-label approach introduced in Tent (i.e., directly 
utilizes the model prediction 𝑦 as the pseudo-labels) takes uncertainty 
into account by leveraging cross-entropy loss (Wang et al., 2020). Al-
though such a method is widely adopted for many TTA tasks, it remains 
insufficient for RS imagery, which often contains complex features 
and subtle inter-class differences. Moreover, no existing methods fully 
leverage weak category information from unlabeled target data. To 
address these issues, we propose the Weak-Confidence Softmax-Entropy 
(WCSE) loss, which aims to enhance the learning of weak categories 
and improve classification accuracy in TTA for RS imagery.

Specifically, we propose a weak-category distribution density 𝑑
designed to highlight categories that are less likely or harder to classify: 

𝑑𝑤𝑒𝑒𝑘 =

{

𝜖 if 𝑐 = 𝑐
1 − 𝜖

𝐶−1 if 𝑐 ≠ 𝑐
(7)

where 𝜖 is a smoothing hyper-parameter and  is recommended to be set 
to 0.01.

Subsequently, we employ an exponential function to scale 𝑑, assign-
ing the week-category confidence weight to the categories: 

(8)
𝜆𝑤𝑐 = exp(𝑑𝑤𝑒𝑒𝑘)

4 
This exponential scaling ensures the importance of probabilities is 
appropriately re-emphasized to the desired scale.

Finally, we utilize the square root of the prediction as the pseudo-
label to form smoother pseudo-labels. Such adjustment enhances the 
model’s adaptability and robustness to multi-class distributions in RS 
imagery. Utilize the week-category confidence weight, the WCSE loss 
is defined as: 

𝑤𝑐𝑠𝑒 = 𝐻(𝑦, 𝜆𝑤𝑐 ⊙
√

𝑦) = −
𝐶
∑

𝑐=1
𝜆𝑐
√

𝑦𝑐 log 𝑦𝑐 (9)

where ⊙ denotes the element-wise multiplication. By assigning higher 
weights to poorly predicted or underrepresented categories, WCSE 
encourages the model to pay more attention to weak-category samples, 
thereby improving overall classification performance.

2.4. Balanced-categories softmax-entropy loss 𝑏𝑐𝑠𝑒

In conventional DA paradigms, it is often presumed that distribu-
tional discrepancies between source and target domains are predomi-
nantly confined to the data boundaries. However, this assumption does 
not hold uniformly across all applications. Specifically, in RS image 
classification, domain shifts frequently manifest not only at the distri-
bution peripheries but also centrally within the data distribution. For 
instance, a particular land cover class may exhibit diverse spectral sig-
natures under varying environmental conditions or across different geo-
graphic regions, leading to intra-class variability that complicates accu-
rate classification. This central distributional shift is exacerbated by in-
herent class imbalances, where certain categories are underrepresented, 
thereby increasing the propensity for misclassification.

This phenomenon, which arises from class imbalance rather than 
edge noise, is particularly prevalent in RS scenarios. Such discrepancies 
can lead to classification errors or a decline in model performance 
when adapting to the target domain. Accordingly, this characteristic 
of RS images calls for a method capable of handling the categories 
distribution across the entire region in environment-varying scenarios 
while maintaining robustness in real-time cross-domain adaptation.

To address the challenge of categorical diversity, we propose the 
Balanced-Categories Softmax-Entropy (BCSE) loss. This loss function is 
designed to soften and balance the predicted probability distributions, 
thereby enhancing the model’s ability to generalize across diverse 
categories in the target domain. Specifically, we introduce a balanced 
distribution representation 𝑏 that integrates the weak-category distri-
bution density 𝑑𝑤𝑒𝑒𝑘 defined earlier. Furthermore, we still scale 𝑏 using 
the exponential function, thereby further enhancing robustness. Such a 
design can be expressed as: 
𝑏 = 𝑦 ⊙ (1 − 𝑑𝑤𝑒𝑎𝑘) + (1 − 𝑦)⊙ 𝑑𝑤𝑒𝑎𝑘

𝜆𝑏𝑐 = exp(𝑏)
(10)

Subsequently, the BCSE loss is formulated by weighting the standard 
softmax-entropy loss with the balanced category coefficients 𝜆𝑏𝑐 : 

𝑏𝑐𝑠𝑒 = 𝐻(𝑦, 𝜆𝑏𝑐 ⊙ 𝑦) = −
𝐶
∑

𝑐=1
𝜆𝑐𝑦𝑐 log 𝑦𝑐 (11)

The BCSE loss function appropriately adjusts the contribution of each 
class to the overall loss based on its representation and confidence 
level. Specifically, classes that are underrepresented or less confidently 
predicted receive higher weights, thereby encouraging the model to 
allocate more learning capacity to these categories. This balanced 
weighting mitigates the risk of the model becoming biased towards 
dominant classes, promoting a more equitable adaptation across all 
categories in the target domain. Consequently, the BCSE loss enhances 
the model’s ability to generalize effectively in environments with sig-
nificant categorical diversity and imbalance, which are characteristic 
of RS imagery.
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2.5. Low saturation distribution loss 𝑙𝑠𝑑

Traditional entropy-based loss functions, such as those employed 
in methods like TENT (Wang et al., 2020), tend to suffer from van-
ishing gradients when the model’s predictions approach near-certain 
values (i.e., probabilities near one). Consequently, as the adaptation 
progresses and predictions become more confident, the gradient signals 
derived from high-confidence samples diminish, leading to a domi-
nance of low-confidence samples in the loss computation. This im-
balance is particularly problematic in RS scenarios, where inter-class 
similarities and environmental variations can make certain categories 
inherently difficult to classify. Therefore, there is a pressing need for a 
loss function that mitigates the overconfidence in high-confidence cat-
egories while preserving informative gradient signals from all samples, 
irrespective of their confidence levels.

To address the issue of distributional saturation, we introduce the 
Low Saturation Distribution (LSD) loss, which is designed to regulate 
the influence of high-confidence predictions and maintain sensitivity 
to low-confidence samples during the adaptation process. The LSD loss 
builds upon the concept of likelihood ratio penalties, which are adept 
at preserving non-vanishing gradients even when the model exhibits 
high confidence in its predictions. Inspired by the limitations of both 
hard and soft pseudo-labeling approaches, the LSD loss employs a ratio-
based penalty term that inversely relates to the collective probability 
mass of all classes excluding the predicted class. Formally, the LSD loss 
is defined as: 

𝑙𝑠𝑑 = −
𝐶
∑

𝑐=1
𝑦𝑐 log

1
∑

𝑖≠𝑐 𝑦𝑖
=

𝐶
∑

𝑖=𝑐
𝑦𝑐 (log

∑

𝑖≠𝑐
𝑦𝑖) (12)

Specifically, the term log∑𝑖≠𝑐 𝑦𝑖 ensures that as the confidence in 
class c increases (i.e., 𝑦𝑐 → 1), the sum ∑𝑖≠𝑐 𝑦𝑖 decreases, thereby 
preventing the logarithmic term from vanishing. This design choice 
guarantees that the gradient signals remain substantial even for high-
confidence predictions, thereby avoiding the dominance of
low-confidence samples in the loss function. By integrating the LSD loss 
into the overall adaptation objective, we effectively reduce the model’s 
overreliance on dominant classes. This encourages the model to allocate 
more learning capacity to weakly represented or ambiguous samples, 
which are critical for capturing subtle domain shifts and enhancing 
classification robustness in RS imagery.

Finally, combining these three modules together, the resulting com-
posite loss, 𝑙𝑠𝑐𝑑 , is: 
𝑙𝑠𝑐𝑑 = 𝛼𝑤𝑐𝑠𝑒 + 𝛽𝑏𝑐𝑠𝑒 + 𝜏𝑙𝑠𝑑 (13)

where 𝛼, 𝛽, 𝜏 are hyperparameters controlling the balance among these 
three modules. This composite objective is readily applied to an online 
or offline TTA procedure, offering a fully test-time adaptation frame-
work that addresses high-dimensional, cross-scene RS datasets more 
effectively than conventional soft or hard pseudo-labeling strategies.

3. Datasets

As shown in Fig.  3, the RS data used for the experiments in this 
study are based on three different open-source RS datasets: AID (Xia 
et al., 2017), NWPU-RESISC45 (Cheng et al., 2017) and UC Merced
(Yang and Newsam, 2010):

1. NWPU-RESISC45 contains high-resolution aerial images derived 
from 45 scene classes, each with 700 images of size 256 × 256. 
NWPU-RESISC45 is mainly used for tasks such as target recogni-
tion, classification, and scene understanding, such as buildings, 
forests, and lakes.

2. AID contains 10 cities from Google Earth and other platforms, 
and consists of panoramic RS images covering 30 land use 
categories, which cover a wide range of conditions in different 
seasons and weather. AID is a standard dataset for evaluating the 
performance of aerial scene classification algorithms because of 
its rich scene categories and scale with 10000 images in total.
5 
3. UC Merced consists of aerial imagery taken by a digital camera 
mounted on a civilian airplane, including 21 land use categories. 
UC Merced provides high-resolution imagery with a spatial res-
olution of 0.3 meters per pixel. It is commonly used for land use 
classification, scene understanding, and urban planning, totaling 
2100 images.

We conduct six DA experiments by pairing these three datasets in all 
possible combinations. The experiments select a shared class between 
two domains to ensure that the source and target domains have consis-
tent classes following previous studies (Zheng et al., 2021b, 2022; Guo 
et al., 2024; Zheng et al., 2024a; Chen et al., 2025). Note that the class 
names of corresponding categories may differ between the two datasets. 
For example, in the transfer task NWPU-RESISC45→AID, both the 
circular farmland and rectangular farmland classes in NWPU-RESISC45 
correspond to the farmland classes in AID.

4. Experiments

4.1. Experiments setup

In this paper, six DA tasks are constructed to evaluate the models’ 
real-time adaptation performance to unseen domains with significant 
distributional gaps, leveraging only the source model. The six DA tasks 
are defined as follows: A→N, N→A; A→U, U→A; U→N, and N→U, 
where A, U, and 𝑁 represent the AID, UC Merced, and NWPU-RESISC45 
datasets, respectively. NWPU-RESISC45 and AID have the largest over-
lap in shared categories for DA, with 23 shared classes. In contrast, 
UC Merced and AID share only 13 categories. Data augmentation 
techniques, such as rotation and cropping, are applied to improve the 
generalization capability during data preprocessing. Additionally, all 
experiments utilize stochastic gradient descent with an initial learning 
rate of 0.001 and a momentum of 0.9 as the optimizer for the adapted 
model during the TTA process.  Moreover, the experiments in this study 
are developed on PyTorch deep learning framework. All computations 
are performed on an NVIDIA A800 GPU. During model training, we 
adopt an 80/20 data split strategy. To further enhance the generaliza-
tion ability of the model, we employ cross-validation, which effectively 
reduces the risk of overfitting. For the activation function, we select 
ReLU, which has demonstrated excellent performance in most computer 
vision tasks.

4.2. Baseline methods

We compare LSCD-TTA against various state-of-the-art DA and TTA 
methods, utilizing ResNet-50, ResNet-101 (He et al., 2016),  and ViT-
B/16 (Dosovitskiy, 2020) employed as backbones. The comparison 
includes the source-trained model as the ‘‘Baseline’’, as well as meth-
ods employing confidence-based loss, cross-entropy (CE) loss, and KL 
divergence (Kullback et al., 1951), which serve as classical domain 
alignment techniques based on the pseudo label. Furthermore, other 
DA methods such as CBST (Zou et al., 2018), ADDA (Tzeng et al., 
2017),  ARS (Chen et al., 2023), CS-CADA (Gu et al., 2023), and 
SHOT (Liang et al., 2020) are also included, which aim to minimize 
the distributional gap between source and target domains through 
self-training, adversarial training, or the transfer of source-domain 
hypothesis information. Additionally, LSCD-TTA is compared with ex-
isting TTA methods, including Tent (Wang et al., 2020), SLR (Mummadi 
et al., 2021), LAME (Boudiaf et al., 2022), ARM (Zhang et al., 2021), 
DomainAdaptator (Zhang et al., 2023),  and TRIBE (Su et al., 2024).
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Fig. 3. Samples of the datasets.
4.3. Comparative study

We conducted a comparative study to evaluate the performance of 
our proposed LSCD-TTA method against several state-of-the-art DA and 
TTA methods using both ResNet-50 and ResNet-101 backbones. The 
results are summarized in Tables  1 and 2. Methods such as Confidence 
and ADDA did not perform as well in our experiments. This could be 
attributed to their reliance on assumptions that may not hold in the 
complex and diverse domain of RS imagery, where high information 
density and numerous categories present additional challenges. DA 
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methods such as SHOT, ARS, and CS-CADA, while performing better 
than other DA methods, may suffer from decreased adaptability due to 
domain shifts, especially in datasets with high category diversity. These 
methods aim to minimize the distribution gap between source and 
target domains, but their performance is still affected by the substantial 
differences between domains, particularly when the category diversity 
or environmental variability is high. TTA methods like Tent, LAME, 
ARM, DomainAdaptator, and TRIBE (Su et al., 2024) series showed 
relatively better performance but still fell short compared to LSCD-TTA. 
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Table 1
Accuracy and standard deviation (%) of comparative study on RS datasets (Backbone: Resnet-50).
 Method NWPU-RESISC45 AID UC Merced Average

accuracy
 

 N→A N→U A→N A→U U→A U→N  
 Baseline 89.74±0.58 83.98±1.36 78.77±0.62 72.49±0.67 62.11±0.62 58.04±0.64 74.19  
 Confidence 88.50±0.28 83.92±1.18 73.72±1.14 72.88±1.27 57.33±0.82 53.13±0.63 71.58  
 CE 89.39±0.30 84.75±1.26 78.81±0.55 74.48±1.28 62.48±1.01 61.49±1.34 75.23  
 KL 89.37±0.30 84.75±1.26 78.83±0.58 74.48±1.30 62.43±0.86 61.63±1.19 75.25  
 CBST 89.19±0.28 85.10±1.55 78.09±0.55 74.17±1.96 62.91±1.19 60.29±0.93 74.96  
 SHOT 89.60±0.24 85.66±1.19 79.56±0.54 75.29±1.44 65.67±0.62 64.00±0.52 76.63  
 ADDA 88.66±0.22 84.56±1.29 75.48±0.72 73.46±1.23 58.45±0.65 57.07±0.46 72.95  
 AdaBN 89.52±0.18 84.92±1.51 78.89±0.49 74.58±1.33 63.00±0.84 61.79±1.01 75.45  
 ARS 89.30±0.25 85.28±1.21 78.84±0.69 74.28±1.35 62.43±1.01 61.20±0.59 75.22  
 CS-CADA 89.39±0.28 84.79±1.29 79.01±0.57 74.52±1.25 62.59±0.86 61.61±1.37 75.32  
 ARM 89.03±0.22 84.31±0.50 78.20±0.27 72.66±0.93 59.59±0.47 58.48±0.38 73.71  
 LAME 89.02±0.23 84.57±1.30 77.25±0.53 73.60±1.28 59.87±0.83 58.78±0.49 73.85  
 Tent 89.81±0.17 85.30±1.48 79.32±0.50 75.05±1.26 64.32±0.78 62.70±1.13 76.08  
 SLR 91.76±0.74 87.24±2.58 71.93±3.73 79.06±1.30 69.86±0.85 55.85±2.40 75.95  
 DA-T 90.34±0.56 85.31±1.49 79.17±0.56 74.42±0.63 63.27±0.80 59.34±0.70 75.31  
 DA-SKD 90.72±0.52 86.03±1.55 79.40±0.60 75.37±0.72 64.22±0.89 59.69±0.74 75.91  
 DA-AUG 91.05±0.45 85.69±1.74 79.48±0.59 75.09±0.33 65.39±1.03 60.48±0.76 76.2  
 TRIBE 90.31±0.39 86.03±1.53 80.07±0.45 76.02±0.60 63.13±1.20 60.38±0.55 75.99  
 LSCD-TTA 92.32±0.25 88.73±1.31 81.79±1.31 81.46±1.47 76.36±1.01 69.07±2.22 81.62  
Table 2
Accuracy and standard deviation (%) of comparative study on RS datasets (Backbone: Resnet-101).
 Method NWPU-RESISC45 AID UC Merced Average

accuracy
 

 N→A N→U A→N A→U U→A U→N  
 Baseline 89.98±0.49 87.26±0.69 80.08±0.70 71.81±0.52 63.42±2.76 58.60±0.39 75.19  
 Confidence 88.81±0.46 85.87±0.48 73.34±1.48 73.31±1.03 57.02±2.75 48.37±1.42 71.12  
 CE 89.79±0.37 87.10±0.41 79.22±1.00 75.34±1.10 64.63±2.56 60.35±0.65 76.07  
 KL 89.77±0.34 87.10±0.41 79.34±1.00 75.34±1.10 64.62±2.51 60.29±0.35 76.08  
 CBST 89.53±0.46 86.99±0.59 78.13±0.93 74.94±1.20 65.27±2.46 59.02±0.47 75.65  
 SHOT 90.10±0.36 87.46±0.53 80.58±0.58 76.08±0.92 67.77±2.46 63.98±0.29 77.67  
 ADDA 89.17±0.45 86.42±0.51 75.04±1.50 73.85±0.99 59.35±2.85 55.68±0.81 73.25  
 AdaBN 90.02±0.28 87.28±0.59 79.92±0.80 75.63±0.62 65.09±2.66 61.35±0.49 76.55  
 ARS 89.79±0.29 87.08±0.50 79.35±0.66 75.23±0.90 64.17±2.54 60.98±0.31 76.10  
 CS-CADA 89.84±0.34 87.15±0.48 79.48±0.67 75.48±1.06 64.76±2.63 60.56±0.35 76.21  
 ARM 89.65±0.27 86.78±0.33 78.76±0.33 73.98±0.73 61.83±1.42 58.58±0.19 74.93  
 LAME 90.16±0.35 87.29±0.54 78.34±0.90 76.31±0.42 61.72±3.11 58.06±0.38 75.31  
 Tent 90.39±0.27 87.64±0.59 80.66±0.85 76.20±0.66 66.71±2.59 62.18±0.68 77.30  
 SLR 92.37±1.05 89.40±0.93 73.39±2.49 79.74±1.01 70.73±2.82 44.63±3.08 75.04  
 DA-T 90.15±0.36 87.78±0.72 78.92±0.76 76.54±0.99 63.60±2.68 59.75±0.38 76.12  
 DA-SKD 90.44±0.33 88.66±0.69 79.30±0.79 78.17±0.71 65.11±2.62 60.40±0.28 77.01  
 DA-AUG 90.82±0.32 88.70±0.51 79.64±0.79 77.74±0.49 66.24±2.48 61.25±0.25 77.40  
 TRIBE 90.69±0.40 88.75±0.42 80.53±0.72 76.86±0.99 64.66±2.63 61.07±0.59 77.09  
 LSCD-TTA 92.43±0.44 90.65±0.70 81.43±1.19 82.77±1.13 80.71±3.82 69.32±1.15 82.89  
The rapid environmental changes and varying data distributions inher-
ent in RS data can limit these advanced methods’ effectiveness, as they 
may not adequately account for the unique challenges posed by such 
datasets. Notably, Our LSCD-TTA method consistently outperformed 
all other methods across all tasks. Specifically, LSCD-TTA achieved an 
average accuracy of 81.62% with ResNet-50 and 82.89% with ResNet-
101, demonstrating significant improvements over the baseline models 
and other comparative methods. The method’s robust performance 
across various tasks and backbones underscores its potential for prac-
tical applications requiring rapid and accurate adaptation to new and 
challenging environments.

To evaluate the effectiveness and generality of LSCD-TTA com-
pared with other TTA methods, we further extend our experiments 
to include adaptation tasks with ViT-B/16 (Dosovitskiy, 2020) as the 
backbone. As shown in Table  3, the results demonstrate that LSCD-TTA 
exhibits strong applicability and superior performance when applied to 
transformer-based networks, confirming the generality of our method. 
However, it is worth noting that the performance of the ViT-based 
models is slightly lower compared to that of the ResNet-based architec-
tures. CNN architectures tend to perform better than transformer-based 
networks especially when the dataset size is not extremely large. This 
is may because CNNs benefit from prior inductive biases, such as local 
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receptive fields and weight sharing, which are particularly advanta-
geous for image tasks. Given that remote sensing images often contain 
high-dimensional features and rich class information, using CNN-based 
backbones better utilizes spatial structure information in the absence 
of massive datasets. 

To objectively assess time efficiency, we analyze and compare the 
adaptation time per image, calculating the average execution time over 
multiple experimental runs. As shown in Table  4, the baseline method, 
which does not perform any adaptation, represents the lower bound of 
time consumption at 0.70 ms/image. However, this comes at the cost of 
poor adaptation performance. In contrast, despite the added complexity 
from the novel loss functions, LSCD-TTA maintains an average time 
consumption of 2.65 ms/img, outperforming all existing TTA methods. 
This demonstrates that LSCD-TTA remains within acceptable time lim-
its and is a practical solution for real-world applications. Therefore, 
LSCD-TTA’s time efficiency and accuracy make it particularly suitable 
for real-time remote sensing applications where quick adaptation is 
essential. 

4.4. Ablation study

As shown in Table  5, the ablation experiments employ the average 
accuracy to assess the effectiveness of the three proposed losses. The 
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Table 3
Accuracy and standard deviation (%) of comparative study on RS datasets (Backbone: ViT-B/16).
 Method NWPU-RESISC45 AID UC Merced Average

accuracy N→A N→U A→N A→U U→A U→N

 Baseline 88.94±0.31 85.60±0.22 76.73±0.76 70.74±1.69 57.72±1.66 56.37±0.92 72.68
 Confidence 88.85±0.34 85.43±0.24 76.43±0.81 70.69±1.78 57.38±1.66 54.94±1.16 72.29
 CE 89.07±0.33 85.88±0.28 76.88±0.70 70.68±1.79 58.14±1.72 56.56±1.12 72.87
 KL 88.97±0.35 85.88±0.28 76.86±0.71 70.68±1.75 58.09±1.68 56.64±1.10 72.85
 CBST 88.99±0.35 85.91±0.29 76.35±0.76 70.66±1.62 58.15±1.97 56.74±0.99 72.80
 SHOT 89.24±0.31 85.96±0.38 77.56±0.62 71.25±1.70 59.93±1.80 59.29±0.46 73.87
 ADDA 88.70±0.39 85.57±0.22 75.79±0.66 70.52±1.68 57.56±1.47 56.25±0.38 72.40
 ARM 88.96±0.35 85.52±0.71 76.90±0.53 70.85±0.89 58.67±1.44 55.91±1.66 72.80
 Tent 89.15±0.33 85.96±0.33 76.88±0.77 70.75±1.82 58.15±1.79 56.32±1.25 72.87
 SLR 89.24±0.49 85.55±0.53 73.98±0.99 69.20±1.69 43.17±3.06 52.62±1.25 68.96

 LSCD-TTA 90.40±0.36 87.54±0.17 78.78±0.78 73.23±2.20 65.22±2.54 62.27±1.21 76.24
Table 4
Time consumption comparison of TTA methods with Resnet-50.
 Method NWPU-RESISC45 AID UC Merced Average

(ms/img)
 

 N→A N→U A→N A→U U→A U→N  
 Baseline 0.62 0.58 0.64 0.89 0.86 0.63 0.70  
 LAME 2.98 5.38 3.03 4.97 7.38 4.05 4.63  
 Tent 2.65 6.27 2.37 3.26 4.43 5.99 4.16  
 SLR 8.11 12.07 8.21 10.26 11.34 8.96 9.83  
 DA-T 8.26 12.09 9.44 4.79 5.05 10.66 8.38  
 DA-SKD 12.64 15.86 12.47 16.08 16.22 11.99 14.21  
 DA-AUG 14.77 8.73 15.58 6.74 6.97 7.33 10.02  
 TRIBE 8.59 8.57 8.42 8.57 8.64 8.97 8.63  
 LSCD-TTA 2.41 2.51 2.39 3.17 3.44 1.97 2.65  
Table 5
Ablation study of the LSCD-TTA.
 Resnet-50 (He et al., 2016)
 Method 𝑤𝑐𝑠𝑒 𝑏𝑐𝑠𝑒 𝑙𝑠𝑑 N→A N→U A→N A→U U→A U→N Average accuracy 
 Baseline 89.74 83.98 78.87 72.49 62.11 58.04 74.19  
 (A) ✓ 91.74 88.18 79.54 79.54 70.27 60.13 78.23  
 (B) ✓ 90.45 86.17 80.17 76.49 67.47 63.40 77.36  
 (C) ✓ 91.61 88.16 81.99 79.15 74.09 68.81 80.64  
 (D) ✓ ✓ 91.29 86.84 80.52 77.85 69.64 62.82 78.16  
 (E) ✓ ✓ 92.15 88.27 81.13 81.22 77.20 68.05 81.34  
 (F) ✓ ✓ 92.07 88.24 80.92 81.08 76.24 68.57 81.19  
 (G) ✓ ✓ ✓ 92.32 88.73 81.70 81.46 76.36 69.07 81.62  
 
 Resnet-101 (He et al., 2016)
 Method 𝑤𝑐𝑠𝑒 𝑏𝑐𝑠𝑒 𝑙𝑠𝑑 N→A N→U A→N A→U U→A U→N Average accuracy 
 Baseline 89.98 87.26 80.08 71.81 63.42 58.60 75.19  
 (A) ✓ 92.08 91.06 81.12 81.40 73.57 58.22 79.57  
 (B) ✓ 91.18 88.43 81.49 77.68 69.92 63.62 78.72  
 (C) ✓ 92.23 89.59 82.91 80.26 77.03 70.04 82.01  
 (D) ✓ ✓ 91.65 89.87 81.74 79.55 72.19 61.94 79.49  
 (E) ✓ ✓ 92.19 90.40 81.68 82.60 80.49 69.10 82.74  
 (F) ✓ ✓ 92.18 90.14 81.07 82.18 80.19 67.30 82.18  
 (G) ✓ ✓ ✓ 92.43 90.65 81.43 82.77 80.71 69.32 82.89  
source-trained model achieves an average accuracy of 74.19% and 
75.19% for Resnet-50 and Resnet-101. In this experiment, the proposed 
WCSE, BCSE, and LSD losses provide individual improvements in aver-
age accuracy of 4.04%, 3.17%, and 6.45% for ResNet-50, and 4.38%, 
3.53%, and 6.82% for ResNet-101. Combining 𝑤𝑐𝑠𝑒 with 𝑤𝑐𝑠𝑒 results 
in a performance boost, achieving an average accuracy of 78.16% and 
79.49% for Resnet-50 and Resnet-101. This suggests that addressing 
both the uncertainty and category diversity simultaneously provides 
joint benefits, enhancing the model’s ability to generalize across diverse 
target domain distributions.

On the other hand, incorporating the individual loss 𝑙𝑠𝑑 with 𝑤𝑐𝑠𝑒
and 𝑏𝑐𝑠𝑒 significantly raises the performance to 81.34% and 81.19% 
for ResNet-50, and 82.74% and 82.18% for ResNet-101. This suggests 
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that while increasing attention to weak categories or diversity can 
yield better results, there may be potential redundancy or conflicting 
optimization objectives between these two loss functions. Additionally, 
excessive preference may lead to underestimating or even misclassify-
ing predictions that should have been trusted, causing a performance 
bottleneck. After incorporating 𝑙𝑠𝑑 , we apply the desaturation concept 
to make the model more cautious in its decision-making, further en-
hancing the cross-domain adaptation performance and the robustness 
of the overall system in real time.

Remarkably, our proposed LSCD-TTA method, which integrates all 
three loss functions, achieves the best performance with an average 
accuracy of 81.62% and 82.89%. This indicates that the combined 
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Fig. 4. Sensitivity analysis of 𝛼, 𝛽, 𝜏 with Resnet-50 (top) and Resnet-101 (bottom).
effect of three losses synergistically enhances the model’s adaptation 
capability.

4.5. Sensitivity analysis of the hyperparameters 𝛼, 𝛽, 𝜏

As illustrated in Fig.  4, we further conduct sensitivity studies on the 
hyperparameters 𝛼, 𝛽, 𝜏, 𝜖 with different backbones separately to find 
the relatively best setting of the hyperparameter used in LSCD-TTA. 
Our findings indicate that different hyperparameter configurations can 
yield superior performance in specific DA tasks. However, the over-
all performance trends remained relatively consistent, suggesting that 
LSCD-TTA maintains robust effectiveness across a range of hyperparam-
eter values. Notably, we  identify the optimal combined performance 
with 𝛼 = 0.25, 𝛽 = 1, 𝜏 = 1.5, 𝜖 = 0.01 when using ResNet-50 and ResNet-
101. These settings appear to balance the contributions of each loss 
component effectively.

5. Discussion

5.1. Negative transfer

To provide an intuitive comparison of different methods against the 
baseline, we plot a negative transfer graph (see Fig.  5) to visualize 
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the overall performance relative to the baseline. Results demonstrate 
that LSCD-TTA consistently demonstrates state-of-the-art performance 
across nearly all DA tasks. Notably, in the U→A and U→N tasks, 
where the source domain models are derived from a limited knowledge 
domain and subsequently adapt to information-rich target domains, 
LSCD-TTA exhibits particularly outstanding results. This indicates that 
our method effectively enables models to efficiently and robustly adapt 
to broader and more complex target domains.

In contrast, while SLR (Mummadi et al., 2021) shows competitive 
performance in the N→A, N→U, and A→U tasks, it suffers from negative 
transfer effects in the A→N and U→N tasks. Compared to these fluctu-
ating results, LSCD-TTA produces more stable and consistent outcomes 
across all tasks, highlighting its robustness. These observations verify 
that LSCD-TTA is well-suited for RS datasets characterized by numer-
ous categories, high sample similarity, and frequent data changes. 
By effectively enhancing performance in cross-domain classification 
tasks, LSCD-TTA addresses the challenges posed by negative transfer, 
ensuring reliable adaptation in complex RS applications.

5.2. Visualization

To demonstrate the effectiveness of LSCD-TTA, we employ Grad-
CAM (Selvaraju et al., 2017) to visualize the model’s attention mecha-
nisms. Grad-CAM generates class-specific attention maps by computing 
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Fig. 5. Negative adaptation results with Resnet-50 and Resnet-101. Compared to other DA and TTA methods, our proposed LSCD-TTA demonstrates superior performances in 
adaptation tasks in terms of average accuracy.
the gradients of class scores with respect to convolutional feature maps. 
As shown in Fig.  6, the baseline model, which is trained with limited 
source domain knowledge, focuses on image regions that resemble 
source domain priors (e.g., rivers and freeways, parking lots and ports), 
which can lead to incorrect predictions. In contrast, LSCD-TTA en-
ables the model to adaptively adjust its focus during test time, paying 
attention to both prominent features and harder-to-classify regions. 
This flexibility allows the model to balance global and local feature 
considerations, resulting in more accurate and robust classification in 
the target domain.

5.3. Future outlook

While we address DA through feature-aligned losses and domain 
offset minimization, there are instances where feature distributions are 
not well-aligned across broader areas, potentially degrading perfor-
mance, especially with large domain shifts. For future work, we plan 
to explore more effective feature alignment methods and advanced 
DA strategies to enhance the model’s adaptability and generalization 
capabilities. Additionally, our current approach assumes a one-to-one 
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category correspondence between source and target domains. However, 
in real-world scenarios, models often encounter entirely new cate-
gories due to diverse geographic environments. Therefore, we aim to 
investigate methods that improve the model’s ability to generalize to 
unknown domains and novel classes, further extending the applicability 
of LSCD-TTA in RS tasks.

6. Conclusion

In this paper, We propose LSCD-TTA, a novel test-time adaptation 
method tailored for cross-scene RS image classification. LSCD-TTA 
introduces three specialized loss functions: the WCSE loss improves the 
model’s ability to distinguish difficult-to-classify categories; the BCSE 
loss mitigates deviations in cross-category sample distributions by soft-
ening and balancing predicted probability distributions; and the LSD 
loss encourages the model to be more cautious with each prediction, 
allowing it to find the correct adaptation direction through stable steps, 
thereby improving performance in the later stages of adaptation. Exten-
sive experiments conducted on three RS datasets (i.e., NWPU-RESISC45, 
AID, and UC Merced) demonstrate that LSCD-TTA significantly outper-
forms state-of-the-art DA and TTA methods. Specifically, it achieves 
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Fig. 6. Grad-CAM comparison between LSCD-TTA and the baseline model using ResNet-50. The heatmaps illustrate the areas of focus during different adaptation tasks. The 
baseline model’s attention is constrained by limited source knowledge, often leading to incorrect focus (e.g., misidentifying commercial buildings as storage tanks in U→A) or 
misclassification despite correct attention areas (e.g., misclassifying ports as parking lots in U→A). In contrast, LSCD-TTA enhances attention performance and enables fine-grained 
classification while preserving global semantic information.
average accuracy improvements of 4.99% with ResNet-50, 5.22% with 
ResNet-101,  and 2.37% with ViT-B/16. These results confirm that 
LSCD-TTA effectively addresses the challenges of cross-scene classifi-
cation in RS imagery, enabling source models to generalize quickly 
and accurately to diverse target domains. We anticipate that LSCD-TTA 
will have broad applications in practical and generalized DA scenarios 
within the RS community.
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