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Abstract— Providing accurate and timely oil palm information
on a large scale is essential for both economic development
and ecological significance. However, owing to different sensors,
photograph acquisition conditions, and environmental hetero-
geneity, the large volume and the variety of the data make
it extremely challenging for large-scale and cross-regional oil
palm tree detection. It is computationally expensive to train
a model from images covering large heterogeneous regions
and all environmental conditions for continuously accumulated
multisource remote sensing data. In this letter, we propose a
new multisource domain generalization (DG) method, Maximum
Mean Discrepancy Deep Reconstruction Classification Network
(MMD-DRCN). It learns representations from multiple source
domains and obtains inspiring performance in an unknown
and “unseen” target domain. Besides classification loss, our
MMD-DRCN distills more representative features through recon-
struction loss and aligns multisource latent features by MMD loss,
both of which effectively enhance the capacity of generalization.
MMD-DRCN achieves an average F1-score of 82.70% in all
transfer tasks, attaining a 5.83% gain compared to Baseline
(a straightforward convolutional neural network (CNN) model).
Experimental results demonstrate DG poses a promising potential
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for large-scale and cross-regional oil palm tree detection without
any information of the target domain.

Index Terms— Deep learning, domain generalization (DG),
multiple sources, oil palm, tree crown detection.

I. INTRODUCTION

O IL PALM is a crucial economic crop in developing tropic
countries, such as Indonesia and Malaysia, which hold

over 80% palm oil production in the world [1]. However,
oil palm is an extremely controversial topic. On one hand,
palm oil has a high economic value, boosting gross domestic
product and local employment. On the other hand, lavishly
expanding oil palm plantation results in deforestation, envi-
ronmental damages, species extinction, and so on. To this
end, providing an accurate and large-scale oil palm plantation
information is prominent for both economic development and
ecological significance. Nowadays, with the rapid development
of remote sensing techniques, it is potential to automatically
and accurately detect oil palm trees using high-resolution
remotely sensed images instead of time-consuming and routine
manpower field surveys [2]. Nevertheless, large-scale oil palm
tree detection using multitemporal or multisensor remote sens-
ing images is still challenging under a variety of geological
and temporal features across regions and images. Although
various deep learning-based methods succeed in forming an
automated approach for tree crown detection in recent years
and exhibit encouraging performance [3]–[6], a brand new
environment may exacerbate the detection results. Moreover,
the labeling efforts needed for covering different features
in heterogeneous regions hamper its efficiency from large-
scale remote sensing applications using multitemporal and
multisensor satellite images.

There are some solutions to the problem of detecting oil
palms in more than one scenario. First, we may add some
annotations in a new scenario (target domain) to prevent accu-
racy degrade, which is time-consuming and fairly expensive
to some extent. Second, some studies adopt the model from
the original scenario (source domain) to a new data by domain
adaptation (DA) approaches without adding any costly annota-
tions, keeping satisfying performance in the target domain [7].
DA is utilized to capture the representations and characteristics
of the target domain for model adaptation with knowledge
about target distribution during training. However, in the real
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Fig. 1. Architecture of our proposed MMD-DRCN. MMD-DRCN contains four parts: 1) Feature extractor (Genc) encodes multisource data (X1, X2, · · · , X N )
as latent features, represented by (H1, H2, · · · , HN ); 2) Classifier C learns to distinguish different class through (H1, H2, · · · , HN ); 3) Decoder Gdec
reconstructs the samples from multisource domains, making latent features more representative; and 4) MMD module learns invariant features among different
source domains.

world, it is extremely cumbersome and infeasible to acquire
new images in advance and repeatedly annotate them at once.
For example, if we have to monitor the oil palm plantation in a
long time series, labeling in each image or adapt model to each
scenario is highly inconvenient and inefficient. Furthermore,
it is difficult to collect images covering all different phases
and regions during model training. Therefore, domain general-
ization (DG) confronts this problem by leveraging the labeled
data from multiple source domains to learn a versatile and
universal representation, striving to build a precise model for
any “unseen” target domains [8], [9]. The common advantage
for DA and DG is that we do not need to add any annotations
in the target domain to prevent detection results deterioration.
However, the main difference between DA and DG is that
DA can utilize the information and distribution of the target
domain, while the target domain is completely “unseen” to
DG. In many practical applications, the target domain is
“unseen,” and it is intractable to train a model from images
covering all geo-locations, photograph angles, and acquisition
dates. DG can learn representations from one or more source
domains, obtains acceptable performance in an unknown target
domain. In remote sensing community, although numerous
methods have been proposed for DA [10]–[13], rare attention
has been paid to DG methods for remote sensing images [14].
Notably, different from the DA scenario, the target domain
data set does not take part in the training process for the DG
scenario.

Our contributions in this letter can be summarized as follows
three aspects.

1) We propose a Maximum Mean Discrepancy Deep
Reconstruction Classification Network (MMD-DRCN)
to detect oil palms in a new environment from multi-
source high-resolution satellite images.

2) Besides classification loss, our MMD-DRCN extracts
more representative features through reconstruction loss
and aligns multisource latent features by MMD loss,
both of which enhance the capacity of generalization.

3) Thus far, it is the first work to explore and exploit
the potential of DG in remote sensing-based tree crown
detection.

II. METHODOLOGY

A. Preliminary

Our goal is to start from the samples of multiple source
domains and train a model that can perform well on a new
target domain. In the training process, we assume to have N
source domains DS = {DS

1 ,DS
2 , · · · ,DS

N |N>1}. For the i th
source domain, DS

i = {(x j
i , y j

i )}, where x j is the j th data
and y j is corresponding label. Our target is to learn a model
f : x → y to have satisfying generalization capacity on a
brand new target domain DT∗ . Note that the target domain is
unavailable to the model f . In addition, the target domain
covers the same categories with multisource domains (Y T∗ =
Y1 = Y2 = · · · = YN ).

B. Network Architecture

Since the target domain is “unseen,” it limits DA methods
from solving this problem. As shown in Fig. 1, our proposed
MMD-DRCN contains four parts.

1) Feature extractor (Genc) encodes multisource data
(X1, X2, · · · , X N ) as latent features, represented by
(H1, H2, · · · , HN).

2) Classifier C learns to distinguish different class through
(H1, H2, · · · , HN).

3) Decoder Gdec reconstructs the samples from multisource
domains, making latent features more representative and
universal.

4) MMD module learns invariant features among different
source domains.

During training, the model is supposed to minimize the
reconstruction loss (L rec), classification loss (Lcls) and MMD
loss (LMMD). The overall loss function can be formulated

L = Lcls + αL rec + βLMMD (1)

where α and β are tradeoff parameters for L rec and LMMD,
respectively. We adopt cross-entropy loss as our Lcls

Lcls =
N∑

i=1

1

ni

ni∑
j=1

m∑
k=1

yk log C
(

Genc

(
x j

i

))
(2)
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Fig. 2. Pipeline of reference phase for oil palm tree detection using
MMD-DRCN.

where ni represents the number of samples in DS
i and m

represents the number of class. As for L rec, we utilize mean-
square error (MSE)

L rec =
N∑

i=1

1

ni

ni∑
j=1

∥∥∥x j
i − Gdec

(
Genc

(
x j

i

))∥∥∥2
. (3)

The reconstruction loss helps Genc to extract more repre-
sentative features, and it helps generalize our model to an
unknown target domain. Inspired by Li et al. [9], we calculate
MMD loss by minimizing the upper bound of the distribution
variance among multisource domains

LMMD = 1

N2

∑
1≤i, j≤N

M M D
(

Hi, H j
)

(4)

where MMD(Hi, H j) describes the MMD distance of
latent features between any two source domains (Di ,D j).
MMD(Hi, H j) can be calculated as follows:

MMD
(

Hi, H j
)2 =

∥∥∥∥∥
1

ni

ni∑
t=1

φ
(
ht

i

) − 1

n j

n j∑
l=1

φ
(
hl

i

)∥∥∥∥∥
2

H

= 1

n2
i

ni∑
t=1

ni∑
t �=1

κ
(

ht
i , ht �

i

)

+ 1

n2
j

n j∑
l=1

n j∑
l�=1

κ
(

hl
j , hl�

j

)

− 2

ni n j

ni∑
t=1

n j∑
l=1

κ
(
ht

i , hl
j

)
(5)

where κ(·, ·) is a positive semidefinite-based kernel function.
In this letter, we use the radial basis function (RBF), which is
a well-established characteristic kernel

κ
(
xi , x j

) =
∑

n

ηn exp

{
− 1

2σn

∥∥xi − x j

∥∥2
}

(6)

where ηn is the weight of the nth kernel function and σn is
the corresponding standard deviation.

C. Postprocessing
In the detection phase, we first unify these images’ res-

olution to 0.6 m and downsample Image A, Image B, and
Image C by bilinear interpolation algorithm to the same
resolution of Image D. The original image is cropped to 17 ×
17 pixels applying sliding window technique with 3-pixels
sliding step [3]. After the prediction of the DG network,
the coordinates of the positive predicted samples are merged
based on the intersection-over-union (IoU) metric in order
to eliminate the dense and repeated detection [13]. The final
results are calculated as the average of the coordinates merged

TABLE I

DETAIL INFORMATION OF OUR FOUR HIGH-RESOLUTION
SATELLITE IMAGES

into the same group by a threshold of 0.3. Fig. 2 displays the
workflow of inference steps.

III. DATA SET

Our study area is located in Peninsular Malaysia, where
the oil palm plantation is expanding rapidly. We have four
high-resolution remote sensing images: Image A, B, C, and D.
Table I lists the detailed information of these four satellite
images. They are acquired from different sensors, locations,
and acquisition dates, resulting in differences in reflectance,
resolution, illumination, and environmental conditions.

Fig. 3 shows our study area and the location of our four
images. We collect oil palm samples in red rectangles and
collect other samples (other vegetation, impervious, etc.) in
blue rectangles. 80% of collected samples are training data
set, while others are validation dateset. Note that we unify
all images to the same resolution of 0.6 m and each sample
has 17 × 17 pixels, which is consistent with our previous
works [3], [13]. In each image, we select four typical regions
as the test data set to evaluate the oil palm tree detection results
for our proposed MMD-DRCN.

IV. EXPERIMENTS

A. Setup

We adopt Adam as optimizer with a learning rate of 0.001
and the training epoch of 150. We set tradeoff parameters α
and β as 0.5 and 5. According to [9], we average RBF kernels
with the bandwidth σ = 1, 5 or 10. During training, we select
three images as three source domains, and the left one is the
“unseen” target domain. We evaluate the capacity of the model
through the performance of the target domain. To this end,
we have four transfer tasks: {B, C, D → A}, {A, C, D → B},
{A, B, D → C}, and {A, B, C → D}. As for the inference
phase, we adopt postprocessing procedures in II-C. We adopt
prevalent evaluation protocol in our previous work [13],
including true positives (TP), false positives (FP), false
negatives (FN), precision, recall and F1-score. Additionally,
the detecting palms whose overlapping area with ground-truth
palms is higher than 0.5 will be considered as correct oil palms
(TP). Our codes are available on https://github.com/rs-dl/
MMD-DRCN.

B. Results

We list the detection results for four transfer tasks
in Table II. Our MMD-DRCN achieves the average F1-score
of 91.18%, 75.49%, 79.74%, and 84.37% when the target
domain is Image A, B, C, and D, respectively. Table III
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Fig. 3. Our study area is located in Peninsular Malaysia. We have four high-resolution remote sensing images: Image A, Image B, Image C, and Image D.
They are acquired from different sensors, locations, and acquisition dates, resulting in differences in reflectance, resolution, and illumination.

Fig. 4. Detection results for {B,C, D → A} (left) and {A, B, C → D} (right). The green points stand for the correct detected oil palms, the orange circles
stand for the ground-truth oil palms that are missing, and the blue circles stand for other types of objects. The black circles denote some examples where our
MMD-DRCN outperforms other methods.

also shows the precision, recall and F1-score for other meth-
ods, including Baseline, domain adversarial neural network
(DANN) [15], DRCN, and conditional DANN (CDANN) [16].
Baseline means the model only learns the representations
from annotations in multisource domains. DRCN means we
train the model through Lcls and Lrec. DANN [15] and
CDANN [16] are two state-of-the-art DG methods. It is
clear to observe that our proposed MMD-DRCN achieves
the highest F1-score for all circumstances with an average
of 82.70%, outperforming other state-of-the-art DG methods
by a margin of 2.84%–5.83%.

Fig. 4 displays the detection results for {B, C, D → A}
(left) and {A, B, C → D} (right). The green points stand for

the correct detected oil palms, the orange circles stand for the
ground-truth oil palms that are missing, and the blue circles
stand for other types of objects. The black circles denote
some examples where our MMD-DRCN outperforms other
methods. We can find that MMD-DRCN has less F P (blue
circles) than Baseline and DRCN. However, DRCN only has
slight improvement for F P , even some negative transfer effect
happening.

C. Sensitive Analysis

As MMD-DRCN contains three loss functions, we explore
different tradeoff parameters in this part. We set α ∈ [0.1, 10]
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TABLE II

DETECTION RESULTS FOR FOUR TRANSFER TASKS. “R A1” DENOTES THE REGION 1 IN IMAGE A

TABLE III

PRECISION, RECALL AND F1-SCORE OF DIFFERENT METHODS FOR FOUR TRANSFER TASKS (%)

Fig. 5. F1-score under different tradeoff parameters, with α ∈ [0.1, 10] and
β ∈ [0.1, 50]. We set α and β as 0.5 and 5 in our MMD-DRCN to obtain the
optimal pairs of tradeoff parameters.

and β ∈ [0.1, 50]. Fig. 5 illustrates the F1-score under different
α and β. To this end, we choose α and β as 0.5 and 5
in our MMD-DRCN to obtain the optimal pairs of tradeoff
parameters.

V. CONCLUSION

In this letter, we propose a new multisource DG scheme,
MMD-DRCN. It learns representations from multiple source
domains and obtains an acceptable performance in an unknown
and “unseen” target domain. Besides classification loss, our
MMD-DRCN extracts more representative features through
reconstruction loss and aligns multisource latent features by
MMD loss, both of which enhance the capacity of gen-
eralization. Our target domain data set does not take part
in the training process. MMD-DRCN achieves an average
F1-score of 82.70% in all transfer tasks, attaining a 5.83% gain
compared to Baseline (a straightforward convolutional neural
network (CNN) model). Experimental results demonstrate DG
poses a promising potential for large-scale and cross-regional
oil palm tree detection without any information of the target
domain. In the future, we will explore more advanced DG
methods for more remote sensing applications.
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