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A B S T R A C T

Domain adaptation methods are able to transfer knowledge across different domains, tackling multi-sensor,
multi-temporal or cross-regional remote sensing scenarios as they do not rely on labels or annotations in
the target domain. However, most of the previous studies have focused on closed-set domain adaptation,
based on the assumption that the source and target domains share identical class labels. Real-world scenarios
are typically more complex, and the model could potentially encounter novel classes that are not previously
included in the source domain, commonly referred to as ‘‘unknown’’ classes. Here we investigate the open-
set domain adaptation scenario in the field of remote sensing scene classification, where there is a partial
overlap between the label space of the target domain and that of the source domain. To deal with this
problem, we propose a novel open-set domain adaptation method for scene classification using remote
sensing images, which is named Multi-Adversarial Open-Set Domain Adaptation Network (MAOSDAN). Our
proposed MAOSDAN consists of three main components. First, we employ an attention-aware Open Set
BackPropagation (OSBP) to better distinguish the ‘‘unknown’’ and ‘‘known’’ samples for the target domain.
Then, an auxiliary adversarial learning is designed for mitigating the negative transfer effect that arises
from forcefully aligning the ‘‘unknown’’ target sample in network training. Finally, we adopt an adaptive
entropy suppression to increase the probability of samples and prevent some samples from being mistakenly
classified. Our proposed MAOSDAN achieves an average score of 75.07% in three publicly available remote
sensing datasets, which significantly outperforms other open-set domain adaptation algorithms by attaining
4.52 ∼ 17.15%. In addition, MAOSDAN surpasses the baseline deep learning model with 18.12% improvement.
A comprehensive experimental evaluation demonstrates that our MAOSDAN shows promising prospects in
addressing practical and general domain adaptation scenarios, especially in scenarios where the label set of
the source domain is a subset of the target domain.
1. Introduction

In recent times, the remote sensing community has witnessed no-
table achievements through the effective utilization of deep learning
techniques across various and multiple tasks, including geo-object de-
tection (Zhu et al., 2017; Zou et al., 2017; Zheng et al., 2023), scene
classification (Li et al., 2020b; Wang et al., 2020; Xu et al., 2021), and
land cover mapping and land use mapping (Kussul et al., 2017; Hong
et al., 2020). Image classification is in the majority in remote sensing
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field since deep learning algorithms can accept a variety of input pre-
dictor data with complex class signatures. However, the effectiveness
of deep learning methods is highly dependent on the availability of
large amounts of labeled data, as it operates in a data-centric man-
ner (Liu et al., 2017, 2019; Rakshit et al., 2020; Zheng et al., 2021a).
Furthermore, several algorithms have shown impressive results under
the assumption that the training and testing data share similar feature
space and distribution (Pan and Yang, 2009). Although in recent years,
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Fig. 1. Various DA scenarios. In the closed-set domain adaptation scenario, the assumption is made that the label sets are identical between the source and target domains,
whereas in the open-set domain adaptation scenario, the label gap of the target domain encompasses that of the source domain. (a) Closed set DA scenario using closed set DA
algorithm; (b) Open set DA scenario using closed set DA algorithm, which cannot distinguish ‘‘unknown’’ classes; (c) Open set DA scenario using open set DA algorithm, which
distinguishes ‘‘unknown’’ class from common ‘‘known’’ classes.
the number of remote sensing images has rapidly increased and can
be accessed via public, most of them remain unlabeled. Therefore,
annotations for datasets are still required before applying deep learning
algorithms, which is labor-exhausting and time-consuming. Besides
this, it is hard for one to find exactly the same kind of images as
the type of images used for a specific application (Panareda Busto
and Gall, 2017). In many practical applications, images with the same
annotations often share different distributions if they are acquired from
different locations with different sensors. In this case, the model trained
by the source data cannot be applied to the target data since deep
learning algorithms will probably wrongly classify the images with
different spatial resolutions and spectral distributions (Adayel et al.,
2020). Therefore, narrowing the distribution disparity between the
source and target domains to achieve more precise classification results
becomes a necessity (Ye et al., 2017).

Fortunately, Domain Adaptation (DA) offers a solution by bridg-
ing the gap between the feature spaces of the source and target
domains, enabling effective mapping from one domain to another
(Panareda Busto and Gall, 2017). Existing DA approaches alleviate
the domain distribution gap either via producing samples/features in
target domains, or by representing domain invariant features, or by
transferring samples across domains by generative networks. As shown
in Fig. 1(a), most of them are closed-set DA, assuming that label sets
are identical across source and target domains. However, the suppose
of closed set DA may be easily violated owning to that real-world
scenarios are usually more complicated in remote sensing applications.
For example, it is easily accessible to acquire annotated tree species
from different datasets. Nevertheless, if we want to recognize tree
species in a brand new forest, we probably have to face two difficulties:
(1) The variety of photographing conditions, acquisition time, sensors
and environments lead to severe domain gap; (2) Some native tree
species that donot exist in commonly accessible datasets lead to severe
category gap, which denotes that the label set of source domain is
a subset of the label set of target domain. In this paper, we refer to
the situation where the label set of the source domain is encompassed
within the label set of the target domain as open set DA. As shown in
Fig. 1(b), if we adopt closed set DA approaches to complete open set
DA scenarios, the model cannot distinguish ‘‘unknown’’ classes (native
tree species). To this end, we add an ‘‘unknown’’ classes in the open-
set DA algorithm to distinguish native tree species from common tree
species in open-set DA scenarios (see Fig. 1(c)). In the remote sensing
field, it is really common for open-set DA scenarios. For instance, in the
task of land cover mapping, if we collect datasets of different types in
various metropolis (e.g., Shanghai and New York) and want to transfer
to a micropolis, such as Kashgar and Anchorage, there are some new
land cover and land use types in micropolis that metropolis donot have
(such as desert and tundra). Therefore, recognizing these ‘‘unknown’’
classes is quite vital in remote sensing applications, and an open-set DA
algorithm can help us to better tackle this issue.
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This paper introduces a novel open-set DA method, namely a Multi-
Adversarial Open-Set Domain Adaptation Network (MAOSDAN), specif-
ically designed for scene classification in remote sensing images, target-
ing situations where the label set of the source domain belongs to the
target domain. The summary of our contributions is as follows:

1. We propose an open-set DA algorithm, named Multi-Adversarial
Open-Set Domain Adaptation Network (MAOSDAN), for scene
classification in remote sensing images to handle the open-
set DA scenarios. Furthermore, the proposed MAOSDAN also
demonstrates robustness on widely recognized open-set domain
adaptation datasets within the computer vision community.

2. In our proposed MAOSDAN, we design an auxiliary adversarial
classifier to evaluate the similarity of samples belonging to
share label space, This auxiliary adversarial classifier effectively
alleviates the negative transfer effect resulting from forcefully
and mistakenly aligning those ‘‘unknown’’ target samples. We
also improve the OSBP by an attention mechanism and design
the adaptive entropy suppression in our proposed MAOSDAN.

3. We perform comprehensive experiments on three prominent
remote sensing datasets, namely UC Merced, NWPU-RESISC45,
and AID, to substantiate our findings. Our method showcases
4.52 ∼ 17.15% improvements in comparison to other state-of-
the-art open-set DA algorithms and outperforms the baseline
model by an improvement of 18.12%. Furthermore, we conduct
a comprehensive analysis to identify and evaluate the adverse
impact of existing closed-set and other open-set domain adap-
tation algorithms in open-set scenarios, specifically focusing on
their performance in accurately classifying ‘‘unknown’’ target
samples.

The remainder is structured as follows. In Section 2 the related
works in the DA field are shortly surveyed. We present our elaborately-
designed MAOSDAN methods in Section 3. We demonstrate our dataset
and experiments in Section 4 and Section 5 respectively. In Section 6,
we test the performance of our proposed model by analyzing the
negative transfer effect and showing the feature visualization, and we
conclude the article in Section 7.

2. Related work

2.1. Domain adaptation

Domain adaptation (DA) falls under the realm of transductive trans-
fer learning, where the target and source tasks remain the same, but the
domains differ (Pan and Yang, 2009). Categorized based on their ap-
proach to reducing domain shift, DA can be divided into three groups:
discrepancy-based methods, adversarial methods, and self-supervised
methods (Bucci et al., 2020). Discrepancy-based methods can measure
the divergence between different domains, such as maximum mean
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discrepancy (MMD) (Long et al., 2015, 2016; Zheng et al., 2021b),
CORrelation Alignment (CORAL) (Sun et al., 2016) and Adaptive Fea-
ture Norm approach (Xu et al., 2019). Adversarial methods enable the
harmonization of feature distributions between the source and target
domains by leveraging a two-player minimax game Cao et al. (2018).
Methods such as Generative Adversarial Network (GAN) (Goodfellow
et al., 2014), BiGAN (Donahue et al., 2016), and conditional generative
adversarial net (CGAN) (Mirza and Osindero, 2014) have been widely
adopted in this research domain. Self-supervised learning learns useful
feature representation by utilizing the data to train on artificial tasks
for supervision (Bousmalis et al., 2016; Carlucci et al., 2019; Ghifary
et al., 2016).

While the aforementioned methods show promising potential in
reducing annotation efforts in the target domain, t is worth mentioning
that the emphasis of these DA approaches lies predominantly on ad-
dressing the closed-set scenario, where the source and target domains
have an identical label set. In this era of big data, real-world applica-
tions often exhibit a scenario where the label set in the target domain
exceeds the label set in the source domain in terms of size. Hence,
closed-set domain adaptation is no longer sufficient to address scenarios
where an ‘‘unknown’’ class exists in the target domain. Therefore, it
is imperative to shift our focus towards open-set domain adaptation
scenarios, which better cater to these situations.

2.2. Open-set domain adaptation

Unlike closed-set domain adaptation, the inclusion of ‘‘unknown’’
classes in the target domain creates a divergence between the source
and target domains. Although Panareda Busto and Gall (2017) firstly
proposed the definition of open-set DA, it assumed that the source do-
main contains the ‘‘unknown’’ class, but it is not always a feasible way
because it is difficult to define the contents of an ‘‘unknown’’ class in
prior. To this end, Saito et al. (2018) proposed Open Set BackPropaga-
tion (OSBP) redefine the scenario where it does not need an ‘‘unknown’’
class sample in the source data. OSBP employs adversarial learning to
effectively discriminate between unknown target samples and known
target samples. Afterward, certain methods utilize a binary classifier
to differentiate and exclude the unfamiliar samples from the target
domain. Consequently, they solely align the known target samples with
the source domain, leaving out the unknown instances (Feng et al.,
2019; Liu et al., 2019; Shermin et al., 2020; Pan et al., 2020; Bucci
et al., 2020; Jing et al., 2021; Kishida et al., 2021).

Existing open-set DA methods borrow the successful ideas from un-
supervised DA algorithms and adapt them for open-set DA by tackling
the unknown target samples in different ways. By utilizing existing
adversarial learning techniques to discriminate between ‘‘known’’ and
‘‘unknown’’ target samples using a threshold, there is a potential risk
of negative transfer effects. This approach unintentionally aligns target
samples with ‘‘known’’ classes, leading to inaccurate classification re-
sults. Furthermore, we adopt an attention-aware OSBP and an adaptive
entropy suppression to enhance the capability of transferability and
confidence.

2.3. Domain adaptation in remote sensing

The manual annotation process for large datasets has become in-
creasingly time-consuming and demanding due to the rapid expansion
of remote sensing imagery. Therefore, an intriguing approach is to
leverage pre-existing annotated remote sensing data to transfer knowl-
edge from the labeled source domain to unlabeled target data. This
method endeavors to utilize the knowledge from the labeled source
domain to facilitate learning in the unlabeled target domain (Tuia et al.,
2016b; Zhang et al., 2021c). The remote sensing data of the source
and target domains can exhibit significant distribution gaps due to
variations in sensors, geographic locations, photographing conditions,
and other factors. As a result, in the remote sensing community, DA
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has been utilized to tackle long-time-series and large-scale applications
by leveraging multi-temporal and multi-source remote sensing data,
where the transferability of the model can be significantly influenced
by variations in ground environments and imaging instruments (Tuia
et al., 2016a). Until now, DA has proven to be effective in minimiz-
ing distribution gaps between remote sensing images and has found
applications in various remote sensing tasks, including scene classi-
fication (Zhu et al., 2019; Lin et al., 2020; Ma et al., 2020; Kalita
and Roy, 2020; Huang et al., 2023), object detection (Koga et al.,
2020; Wu et al., 2020; Li et al., 2020a; Zhang et al., 2021b), semantic
segmentation (Mateo-García et al., 2020; Shamsolmoali et al., 2020;
Iqbal and Ali, 2020; Wittich and Rottensteiner, 2021; Lu et al., 2021;
Vega et al., 2021; Li et al., 2021; Luo and Ji, 2022), 3D point cloud
processing (Shen et al., 2023) and regression (Nyborg et al., 2022)
tasks. DA approaches have been widely recognized as vital and effective
in addressing the challenges of remote sensing-based multi-temporal,
large-scale, and cross-regional scenarios.

The existing off-the-shelf DA approaches primarily focus on tack-
ling the closed-set DA problem within the remote sensing community.
Though in the remote sensing field some efforts have been made
on a few more superior transfer-learning-based applications, such as
multi-source DA (Elshamli et al., 2019), multi-target DA (Zheng et al.,
2021c), partial DA (Hu et al., 2020; Zheng et al., 2022) and domain
generalization (Zheng et al., 2021b), open-set DA is still lack of at-
tention of researchers. There are several studies exploring open-set DA
algorithms in remote sensing community (Adayel et al., 2020; Zhang
et al., 2021a; Chen and Wang, 2022; Wang et al., 2023; Niu et al.,
2023). Zhang et al. (2021a) minimizes both the overall distribution
disparity between domains and the specific distribution differences
among the same classes across different domains. But the performance
of ‘‘unknown’’ class have no further improvement compared to other
closed set DA methods (Zhang et al., 2021a). As for Adayel et al.
(2020), by aligning the source and target domains and employing a
pareto-based ranking scheme, it efficiently identifies potential samples
belonging to the ‘‘unknown’’ class in the target domain. However, the
accuracy of ‘‘unknown’’ samples is yet relatively low, some of which
are even lower than 60%. Chen and Wang (2022) proposes MGCN
to tackle open set few-shot scene classification issue, which is quite
different from ours and it is a more specific scenario. We propose a new
open-set domain adaptation method named MAOSDAN designed for
scene classification in remote sensing images to especially strengthen
the ability to recognize ‘‘unknown’’ target samples, addressing the
challenging scenario encountered in real-world remote sensing applica-
tions. Furthermore, the proposed MAOSDAN is also robust on standard
open-set DA datasets in the computer vision community.

3. Methodology

3.1. Preliminary and overview

First, we give notations and definitions before elaborating on our
proposed approach. In the closed-set DA setting, there exists a source
domain dataset (𝑠 =

{(

𝐱𝑠𝑖 , 𝑦
𝑠
𝑖
)}𝑛𝑠

𝑖=1) with annotations and a label-
free target domain dataset (𝑡 =

{(

𝐱𝑡𝑖
)}𝑛𝑡

𝑖=1) during the training phase,
where 𝑛𝑠 represents the number of images in the source domain dataset
nd 𝑛𝑡 represents the number of images in the target domain dataset.
eanwhile, 𝐱𝑠𝑖 represents a random sample in 𝑠 and 𝑦𝑠𝑖 denotes the
atched annotation; 𝐱𝑡𝑖 denotes a random sample in 𝑡 without a

nown label. Notably, owing to the domain shift, feature distribution
f the source domain (𝑠 (𝐱𝑠, 𝑦𝑠)) and the target domain (𝑡

(

𝐱𝑡
)

) are
ommonly extremely diverse, meaning that applying the model trained
n dataset 𝑠 directly to evaluate dataset 𝑡 can lead to significant
erformance deterioration. Moreover, in the context of open-set domain
daptation, it is important to note that the label set of the source data is
subset of the label set of the target data (i.e., 𝑠 ⊆ 𝑡, where 𝑠 and 𝑡

epresent the total number of classes in  and  , respectively). This
𝑠 𝑡
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Fig. 2. The overall workflow of the proposed MAOSDAN. MAOSDAN contains three major modules, including an attention-aware Open Set BackproPagation (OSBP), an auxiliary
classifier and an adaptive entropy suppression. An attention-aware OSBP: we modify the original OSBP (Saito et al., 2018) by assigning different weights in the adversarial module
to better distinguish the unknown and known samples for the target domain; An auxiliary classifier: we design an auxiliary classifier with the same class outputs as the known
classes, assisting our model to better align distributions between the source and the target domains and distinguish the unknown and known samples for the target domain; An
adaptive entropy suppression: we propose an adaptive entropy suppression to enhance the prediction confidence and avoid forceful minimization of entropy value for the target
domain through an attention mechanism.
setting meets wider applications in real-world scenarios, as we often
have limited control over the class boundaries in the target domain.
However, open-set DA scenarios present two significant challenges.
One is that it is difficult to distinguish the ‘‘unknown’’ target samples
from known ones while classifying the known target samples correctly;
Another concern is the potential risk of directly aligning the global
source distribution with that of the target domain as closed-set DA.
The ‘‘unknown’’ target samples can negatively impact the performance
of the DA model, potentially leading to worse results compared to a
straightforward CNN model.

Therefore, we propose a new approach termed Multi-Adversarial
Open Set Domain Adaptation Network (MAOSDAN), for open set re-
mote sensing scene classification. Fig. 2 shows the overall workflow
of our MAOSDAN, including three major modules, i.e., an attention-
aware Open Set BackproPagation (OSBP), an auxiliary classifier and
an adaptive entropy suppression. We summarized the three major
components of MAOSDAN as follows:

1. An attention-aware OSBP. We modify the original OSBP (Saito
et al., 2018) by assigning different weights in the adversar-
ial module to better distinguish the ‘‘unknown’’ and ‘‘known’’
samples for the target domain. Those samples possessing high
classification certainty are expected to own higher weights.

2. An auxiliary adversarial learning. We an auxiliary learning that
shares the same class outputs as the known classes, aiding in
effectively aligning the distributions between the source and
target domains, as well as distinguishing between ‘‘unknown’’
and ‘‘known’’ samples within the target domain.

3. An adaptive entropy suppression. We propose an adaptive en-
tropy suppression to enhance the prediction confidence and
avoid forceful minimization of entropy value for the target do-
main through a weighting mechanism.

3.2. An attention-aware OSBP

Inspired by the minimax two-player game from Generative Adver-
sarial Network (GAN) (Goodfellow et al., 2014) and Domain Adver-
sarial Neural Network (DANN) (Ganin et al., 2016), OSBP develops a
two-player game for open set domain adaptation problem, aiming at
reducing the domain gap between the source and the target domains,
as well as constructing a good boundary for the unknown class in the
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target domain (Saito et al., 2018). In general, the minimax game of
OSBP can be formulated as:
𝜃𝑔 = arg min

𝜃𝑔
𝐶𝑦 + 𝐶𝑎𝑑𝑣

𝜃𝑓 = arg min
𝜃𝑓

𝐶𝑦 − 𝐶𝑎𝑑𝑣
(1)

where 𝜃𝑓 and 𝜃𝑔 are the parameters of feature generator (𝐺𝑓 ) and the
classifier (𝐺𝑦). The classifier 𝐺𝑦 utilizes features generated by 𝐺𝑓 to
produce class probabilities in an 𝑁 + 1-dimensional space. Here, 𝑁
represents the number of categories in the source domain, and the
(𝑁 + 1)𝑡ℎ probability corresponds to the likelihood of the unknown
class. In 𝐶𝑎𝑑𝑣, a gradient reversal layer (Ganin et al., 2016) is employed
to invert the gradient sign during the backward pass, allowing for
effective domain alignment. 𝐶𝑦 is the source classifier’s objective, and
𝐶𝑎𝑑𝑣 is the adversarial objective, whose calculations are shown in
Eqs. (2) and (3), respectively.

𝐶𝑦
(

𝜃𝑓 , 𝜃𝑔
)

= 1
𝑛𝑠

∑

𝐱𝑖∈𝑠

𝐿y
(

𝐺𝑦
(

𝐺𝑓
(

𝐱𝑖
))

, 𝑦𝑖
)

(2)

in which 𝐿𝑦 denotes the classification loss calculated by the standard
cross-entropy loss function.

𝐶𝑎𝑑𝑣
(

𝜃𝑓 , 𝜃𝑔
)

= − 1
𝑛𝑡

∑

𝐱𝑖∈𝑡

𝑡𝑙𝑜𝑔
(

𝑝
(

𝑦 = 𝑁 + 1|𝐱𝑖
))

− 1
𝑛𝑡

∑

𝐱𝑖∈𝑡

(1 − 𝑡) 𝑙𝑜𝑔
(

1 − 𝑝
(

𝑦 = 𝑁 + 1|𝐱𝑖
))

(3)

in which 𝑝
(

𝑦 = 𝑁 + 1|𝐱𝑖
)

represents the probability of ‘‘unknown’’ class
which can be formulated as 𝑝

(

𝑦 = 𝑁 + 1|𝐱𝑖
)

=
(

𝐺𝑦
(

𝐺𝑓
(

𝐱𝑖
)))

𝑁+1. 𝑡 is
a constant value (0 < 𝑡 < 1) that OSBP expects the output probability
of the unknown class in the target domain. In the original paper (Saito
et al., 2018), 𝑡 is empirically equal to 0.5 to make a boundary between
the known and the unknown target samples.

Because of its effectiveness and simplicity, OSBP has been adopted
in other open set domain adaptation works (Feng et al., 2019; Shermin
et al., 2020; Zhang et al., 2020). However, it seems unreasonable that
it is identical for each sample from the target domain in the adversarial
objective according to Eq. (3). The original OSBP may suffer from
performance degradation due to the presence of ‘‘hard’’ samples, which
are located in the classifier’s margin. Especially in remote sensing scene
classification tasks, it is very common that samples of two different
classes have similar texture and spectral characteristics, such as Bare
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Land and Dessert, Grassland and Farmland, Overpass and Intersection,
etc. To this end, there are many similar samples that are ‘‘hard’’ to
classify in remote sensing field. Consequently, the adversarial learning
process is expected to assign lower weights to the ‘‘hard’’ samples and
higher weights to the ‘‘easy’’ samples. We quantify how the sample is
‘‘hard’’ or ‘‘easy’’ by the entropy criterion 𝐻 (ℎ) = −

∑𝑁
𝑛=1 ℎ𝑛𝑙𝑜𝑔

(

ℎ𝑛
)

,
also employ an entropy-based weighting scheme 𝑚 (𝐱) = 1 + 𝑒−𝐻(ℎ(𝐱))

n each target sample (Long et al., 2018). Therefore, our improved
dversarial objective in OSBP can be calculated as Eq. (4).

𝑒
𝑎𝑑𝑣

(

𝜃𝑓 , 𝜃𝑔
)

= − 1
𝑛𝑡

∑

𝐱𝑖∈𝑡

𝑚
(

𝐱𝑖
)

𝑡𝑙𝑜𝑔
(

𝑝
(

𝑦 = 𝑁 + 1|𝐱𝑖
))

− 1
𝑛𝑡

∑

𝐱𝑖∈𝑡

𝑚
(

𝐱𝑖
)

(1 − 𝑡) 𝑙𝑜𝑔
(

1 − 𝑝
(

𝑦 = 𝑁 + 1|𝐱𝑖
))

(4)

.3. An auxiliary adversarial learning

Although our improved OSBP addresses the imbalanced problem for
‘hard’’ and ‘‘easy’’ samples, it remains unavoidable negative transfer
ffects. OSBP attempts to align those samples with 𝑝 (𝑦 = 𝑁 + 1) < 0.5
n the target domain, which are considered as ‘‘known’’ class. However,
o all target samples with 𝑝 (𝑦 = 𝑁 + 1) < 0.5 should be considered as

‘known’’ class. For example, when the probability of an ‘‘unknown’’
lass for a target sample is 𝑝 (𝑦 = 𝑁 + 1) = 0.45 while the probabilities
f other ‘‘known’’ classes are all lower than 0.45, forcefully aligning
his target sample to the known classes may cause negative transfer
ffect. Therefore, we add an auxiliary classifier to extend the domain
dversarial module and reduce the negative transfer effect. In remote
enisng community, it is quite difficult to recognize brand-new scenar-
os (‘‘unknown’’ class), especially for land use mapping. For example,
f the ‘‘commercial’’ is an ‘‘unknown’’ class and the ‘‘dense residential’’
s one of the known classes. It is easily to recognize the ‘‘commercial’’
s ‘‘dense residential’’ instead of ‘‘unknown’’ class. Furthermore, if we
se previous popular open-set domain adaptation methods that heavily
epends on a fixed threshold from utilizing existing adversarial learning
echniques to discriminate between ‘‘known’’ and ‘‘unknown’’ target
amples (Saito et al., 2018; Feng et al., 2019), the adaptation model
ould not recognize ‘‘unknown’’ samples correctly and also cause dete-
ioration of ‘‘known’’ classes to some extent. To this end, we propose
n auxiliary adversarial learning to solve the above limitations.

Different from the original classifier, our auxiliary classifier outputs
probabilities for each training sample. The source training samples

an be accurately classified into 𝑁 classes through our auxiliary clas-
ifier, which better learns the representations of the ‘‘known’’ classes.
herefore, besides the original classification objective in Eq. (2), we
ave auxiliary classification objective (𝐶𝑎

𝑦 ), which can be formulated
s Eq. (5):

𝑎
𝑦

(

𝜃𝑓 , 𝜃
𝑎
𝑔

)

= 1
𝑛𝑠

∑

𝐱𝑖∈𝑠

𝐿y

(

𝐺𝑎
𝑦
(

𝐺𝑓
(

𝐱𝑖
))

, 𝑦𝑖
)

(5)

in which 𝜃𝑎𝑔 denotes the parameters of the auxiliary classifier (𝐺𝑎
𝑦).

Notably, we adopt a leaky-softmax (Cao et al., 2019) in the auxiliary
domain classifier to ensure that the total probability of known classes
is less 1. To this end, we have two kinds of probabilities to describe
the similarity between the training samples and the ‘‘known’’ classes,
i.e., 𝑆𝑜 (𝐱) and 𝑆𝑎 (𝐱), which are induced by the original classifier and
he auxiliary classifier and can be calculated as Eq. (6):

𝑆𝑜 (𝐱) = 1 − 𝑝 (𝑦 = 𝑁 + 1|𝐱)

𝑎 (𝐱) =
𝑁
∑

𝑘=1
𝐺𝑎,𝑘
𝑦

(

𝐺𝑓 (𝐱)
)

(6)

We integrate these two probabilities to finally measure the similar-
ty (𝑆 (𝐱)) of training samples belonging to share label space according

to Eq. (7). Specially, if the training samples are classified as the
‘‘known’’ class, the value of 𝑆 (𝐱) will be high or close to 1, while
if the training samples do not belong to share label space, the value
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t

of 𝑆 (𝐱) will be low or close to 0. It should be emphasized that once
ne of these two similarity measures is low, the final similarity 𝑆 (𝐱)
ill have a low value, indicating the training sample is dissimilar to

he ‘‘known’’ class. This strategy indicates that our auxiliary classifier
an enhance the capacity of distinguishing the samples belonging to
‘unknown’’ classes.

(𝐱) = 𝑆𝑜 (𝐱) × 𝑆𝑎 (𝐱) (7)

Therefore, our auxiliary domain adversarial objective can be formu-
ated as Eq. (8):

𝑎
𝑎𝑑𝑣

(

𝜃𝑓 , 𝜃
𝑎
𝑔

)

= − 1
𝑛𝑠

∑

𝐱𝑖∈𝑠

𝑙𝑜𝑔
(

𝑆
(

𝐱𝑖
))

− 1
𝑛𝑡

∑

𝐱𝑖∈𝑡

𝑙𝑜𝑔
(

1 − 𝑆
(

𝐱𝑖
))

(8)

3.4. An adaptive entropy suppression

To enhance the prediction confidence of classifier in
semi-supervised learning, entropy minimization regularization is pro-
posed (Grandvalet and Bengio, 2004) and have been widely used in
DA algorithms for modifying the adaptive classifier (Long et al., 2016;
Zheng et al., 2020). Entropy loss is a method developed to improve
the confidence of classifier predictions based on the entropy function
derived from information theory. This approach aims to increase the
classifier’s ability to effectively utilize unlabeled samples in the target
domain. More specifically, entropy suppression regularization reduces
the uncertainty of probability distributions for output categories. Nev-
ertheless, entropy is not needed to be minimized for all samples in the
target domain. For example, it is difficult to recognize the input samples
into ‘‘known’’ or ‘‘unknown’’ samples. Negative consequences may arise
when attempting to forcefully minimize the entropy of these target
samples that pose challenges in accurate classification. In addition, due
to different sensors and surface environment, the spectral and texture
characteristics for remote sensing images of the same class can be quite
different. Therefore, the prediction from the classifier for the target
remote sensing images may have low prediction scores for correct
classes. To this end, we propose an adaptive entropy suppression,
which is proposed to reduce the uncertainty of probabilities for output
classes, to make the classifier more accessible to the unlabeled target
remote sensing images. We can adopt the output of original classifier
�̂�𝑖 = 𝐺𝑦

(

𝐺𝑓
(

𝐱𝑖
))

to generate a weight for each target sample’s entropy
suppression, only utilizing the probability of ‘‘unknown’’ prediction
confidence. The value of weight can be formulated as Eq. (9):

𝑣𝑖 = 1 − [𝑝𝑁+1𝑙𝑜𝑔
(

𝑝𝑁+1) +
(

1 − 𝑝𝑁+1) 𝑙𝑜𝑔
((

1 − 𝑝𝑁+1))]

𝑝𝑁+1 = 𝑝
(

𝑦 = 𝑁 + 1|𝐱𝑖
) (9)

We can easily understand that the more transferable the correspond-
ing sample is, the larger the attention value 𝑣𝑖 is. Our attentive entropy
regularization is employed to embed the entropy-guidance attention
value 𝑣𝑖 into the entropy loss, which can be calculated as:

𝐶ent
(

𝜃𝑓 , 𝜃𝑔
)

= − 1
𝑛𝑠

∑

𝐱𝑖∈𝑠

𝑁
∑

𝑐=1
⋅𝑝𝑐𝑖 ⋅ log

(

𝑝𝑐𝑖
)

− 1
𝑛𝑡

∑

𝐱𝑖∈𝑡

𝑁+1
∑

𝑐=1
𝑣𝑖 ⋅ 𝑝

𝑐
𝑖 ⋅ log

(

𝑝𝑐𝑖
)

(10)

where 𝑁 means the amount of classes, and 𝑝𝑐𝑖 denotes the prediction
likelihood of classifier for sample 𝐱𝑖 corresponding to class 𝑐, and we
an get them by calculating from 𝐩𝑖 = 𝐺𝑦

(

𝐺𝑓
(

𝐱𝑖
))

. In this way, the
daptive entropy suppression improves the certainty and confidence of

he prediction, thus effectively improving the classifier’s performance.
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Table 1
The detailed information of three common and available remote sensing datasets.
Dataset Year Classes Images

per class
Number
of images

Resolution (m) Size Source

NWPU-
RESISC45

2017 45 700 31,500 0.2∼30 256 × 256 Google
Earth

AID 2017 31 220∼420 10,000 0.5∼8 600 × 600 Google
Earth

UC
Merced

2010 21 100 2,100 0.3 256 × 256 USGS
Table 2
The label information for the five transfer tasks is provided below. The class names within parentheses represent the corresponding class names in the target domain. It is important
to note that shared classes are present in both the source and target domains, whereas unknown classes are exclusive to the target domain and are collectively considered as
‘‘unknown’’ classes. It is worth mentioning that we have excluded the scenario of NWPU-RESISC45 → UC Merced, as all the classes in UC Merced are already included in
NWPU-RESISC45.

Source domain Target domain Shared classes Unknown classes

Bridge, Baseball field, Church, Beach, Forest, Airport, Chaparral, Basketball Court, Cloud, Airplane
Medium residential, Dense residential, Desert, Commercial Lake, Palace, Mobile Home Park, Island

AID NWPU-RESISC45 Rectangular Farmland, Circular Farmland Intersection, Golf Course, Freeway
Industrial, Port (Harbor),Ground track field Runway, Railway, Sea Ice, Roundabout
Storage tank, Sparse residential, Meadow, Viaduct (Overpass) Tennis Court, Snowberg, Terrace, Ship
River, Mountain, Stadium, Railway station, Parking Thermal Power Station, Wetland

Baseball field, Beach, Commercial (Buildings),

AID UC Merced Parking, Medium residential, Port (Harbor), Forest Chaparral, Golf Course, Freeway, Intersection
Sparse residential, Viaduct (Overpass), Storage tanks Runway, Tennis Court, Mobile Home Park, Airplane
Farmland (Agricultural), River, Dense residential

Beach, Church, Airport, Commercial area, Baseball diamond
Circular farmland & Rectangular farmland (Farmland),

NWPU-RESISC45 AID River, Medium residential, Harbor (Port), Sparse residential School, Resort, Pond, Square
Dense residential, Industrial area, Parking lot, Mountain Center, Bare Land, Park
Forest, Railway station, Meadow, Ground track field
Storage tank, Stadium, Desert, Viaduct, Bridge

Baseball diamond, Farmland, Buildings (Commercial), Church, Bridge, Center, Airport, Square, Bare Land
UC Merced AID Forest, Meadow, Medium residential, Park, Dense residential Desert, Industrial, Overpass (Viaduct), Mountain, Beach, Stadium,

Sparse residential, River, Harbor (Port), Parking lot, Storage tanks Playground, Resort, Pond, School, Railway Station

Baseball diamond, Airplane, Buildings (Commercial), Beach Bridge, Basketball Court, Cloud, Church, Airport
Agricultural (Circular farmland & Rectangle farmland), Freeway Industrial Area, Ground Track Field, Island, Meadow,

UC Merced NWPU-RESISC45 Golf course, Intersection, Medium residential, Harbor Palace, Railway, Railway Station, Roundabout,
Parking lot, Mobile home park, River, Chaparral, Runway, Forest Snowberg, Ship, Sea Ice, Terrace, Stadium, Lake,
Overpass, Tennis court, Sparse residential, Storage tanks Thermal Power Station, Wetland, Mountain, Desert
3.5. Minimax optimization problem

Therefore, our proposed MAOSDAN consists of an attention-aware
OSBP, an auxiliary classifier loss and an adaptive entropy suppression.
Our minimax optimization issue aims to find the parameters of model
𝜃𝑓 , 𝜃𝑔 and 𝜃𝑒𝑔 that satisfy as Eq. (11) jointly:

𝜃𝑔 = argmin
𝜃𝑔

𝐶𝑦 + 𝜆𝐶𝑒
𝑎𝑑𝑣

̂𝑓 = argmin
𝜃𝑓

𝐶𝑦 − 𝜆𝐶𝑒
𝑎𝑑𝑣 + 𝛼

(

𝐶𝑎
𝑦 − 𝛽𝐶𝑎

𝑎𝑑𝑣

)

+ 𝛾𝐶𝑒𝑛𝑡

𝜃𝑒𝑔 = argmin
𝜃𝑒𝑔

𝐶𝑎
𝑦 + 𝛽𝐶𝑎

𝑎𝑑𝑣

(11)

where 𝐶adv and 𝐶y denote the domain adversarial alignment and the
classification’s learning objective for the source domain, respectively.
𝐶𝑎

y and 𝐶𝑎
adv mean the auxiliary classifier’s learning objective and

the domain adversarial objective of the auxiliary classifier, respec-
tively. In addition, 𝐶ent denotes the entropy loss. 𝜆, 𝛽, 𝛼 and 𝛾 denote
three hyper-parameters to manually realize trade-off among different
objectives.

4. Datasets

To assess and measure the effectiveness of our novel MAOSDAN
approach, we curate a unique dataset by combining three distinct open-
source remote sensing datasets (i.e., NWPU-RESISC45 (Cheng et al.,
2017), AID (Xia et al., 2017) and UC Merced (Yang and Newsam,
2010)), which are originated from various regions and different sen-
sors with diverse resolutions and acquisition dates. Table 1 lists the
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thorough details of used open-source datasets. These datasets have
been utilized for validating previous domain adaptation approaches in
remote sensing field (Lu et al., 2019; Liu and Su, 2020; Adayel et al.,
2020; Zhu et al., 2021). Firstly, we review these three remote sensing
datasets. Then we present our re-organized and re-collected dataset and
finally introduce our open set domain adaptation scenarios.

• NWPU-RESISC45 (Cheng et al., 2017) comprises a total of 31,500
images, with each image having a spatial resolution ranging from
30 m to 0.2 m per pixel. These images are classified into 45
distinct scene classes, with each class consisting of 700 images.
Notably, this dataset stands out as the largest among the three
datasets used in this paper. It is characterized by its remarkable
between-class similarity, significant within-class diversity, and a
wide range of image variations.

• AID (Xia et al., 2017) is composed of 30 aerial scene cate-
gories obtained from the Google Earth platform. Each class in the
dataset includes sample images collected from diverse regions and
countries, captured during different seasons, times, and imaging
conditions. The AID dataset comprises a collection of 10,000
sample images, with varying class sizes ranging from 220 to
420 images. Each image in the AID dataset has dimensions of
600 × 600 pixels.

• UC Merced (Yang and Newsam, 2010) encompasses a diverse
range of 21 land use classes, obtained from high-resolution aerial
orthoimagery with a pixel resolution of one foot. This dataset
has garnered considerable acclaim as a valuable asset for scene
classification endeavors in the field of remote sensing. It has
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Fig. 3. Examples of five open-set domain adaptation scenarios: AID → NWPU-
RESISC45, AID → UC Merced, NWPU-RESISC45 → AID, UC Merced → AID, and UC
Merced → NWPU-RESISC45. It is worth noting that we exclude the NWPU-RESISC45
→ UC Merced scenario, as all the classes in UC Merced are already present in
NWPU-RESISC45.

emerged as a pioneering open-source validation dataset, serving
as an important benchmark for evaluating various methods and
techniques. The images within the UC Merced dataset have been
extracted from large-scale aerial images obtained from the United
States Geological Survey (USGS).

Based on the class composition of NWPU-RESISC45, AID, and UC
Merced datasets, we have devised five distinct transfer scenarios for our
study. The label information for each scenario is presented in Table 2.
It is notable that the transfer task from NWPU-RESISC45 to UC Merced
represents a typical domain adaptation scenario, as categories in the
UC Merced dataset already exist in the NWPU-RESISC45 dataset. Thus,
we have a total of five transfer tasks for open-set domain adaptation
across these three datasets. Please note that the class names provided
in parentheses in Table 2 indicate their respective names in the target
domain. For instance, in the UC Merced → NWPU-RESISC45 trans-
fer task, the class ‘‘Agricultural’’ in UC Merced matches the classes
‘‘Rectangular Farmland’’ and ‘‘Circular Farmland’’ in NWPU-RESISC45.
Similarly, in the AID → NWPU-RESISC45 transfer task, the class ‘‘Port’’
in AID matches the class ‘‘Harbor’’ in NWPU-RESISC45. As we can
observe, the more ‘‘unknown’’ classes there are, the more difficult the
transfer task becomes. Fig. 3 showcases some representative classes
from these five transfer tasks, highlighting the open-set DA scenarios
involved.

5. Experiments

5.1. Setup

In our experimental setup, we set the values of three hyperparam-
eters, namely 𝜆, 𝛼, 𝛽, and 𝛾, as 1.0, 0.1, 2.0, and 1.0, respectively. All
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the experiments were performed using PyTorch (Paszke et al., 2019)
using GeForce 2080 Ti. The ResNet-50 model architecture (He et al.,
2016) serves as the backbone for our model and is initially pre-trained
on the ImageNet dataset (Russakovsky et al., 2015). In our approach,
we utilize a learning rate of 0.001 and follow the annealing strategy
outlined in the work of Ganin et al. (2016). As for the optimizer,
we use mini-batch stochastic gradient descent (SGD) (Bottou, 2010)
as our optimizer incorporating a momentum of 0.9. The batch size
used in our experiments is set to 36. Our proposed MAOSDAN and
other approaches are evaluated by our re-organized datasets introduced
in Section 4. Five types of open set DA scenarios are conducted for
each method. The five transfer tasks are U → N, A → N, A → U, U
→ A, and N → A, in which A, U and N represent AID, UC Merced,
and NWPU-RESISC45 respectively. Our codes are available in https:
//github.com/rs-dl/MAOSDAN. We hope that our open-source codes
could promote the development of open-set domain adaptation and its
applications in remote sensing community.

To keep consistency with previous studies (Loghmani et al., 2020;
Bucci et al., 2020), We employ a set of four evaluation metrics to
assess the performance of our approach. These metrics include: (1) 𝑂𝑆,
which represents the normalized accuracy across all classes, including
the unknown class; (2) 𝑂𝑆∗, which measures the normalized accuracy
specifically for the known classes; (3) 𝑈𝑁𝐾, indicating the accuracy of
the unknown samples; and (4) 𝐻𝑂𝑆, which represents the harmonic
mean of 𝑂𝑆∗ and 𝑈𝑁𝐾 and which can be formulated as Eq. (12). In the
metrics of open-set DA scenario, OS is a measure of the overall perfor-
mance combining with 𝑂𝑆∗ and 𝑈𝑁𝐾. However, including 𝑈𝑁𝐾 as a
separate class does not offer a suitable solution. It becomes particularly
problematic when the number of known classes increases, as the impact
on open-set recognition becomes more pronounced. In such cases, the
role of the 𝑈𝑁𝐾 class becomes insignificant and fails to adequately
capture the true performance of the system. In this study, we will
prioritize the utilization of the 𝐻𝑂𝑆 metric, which holds significant
importance. This decision stems from its ability to assess the algorithm’s
performance on both known and unknown samples, rendering it a
comprehensive evaluation criterion.

𝐻𝑂𝑆 = 2 × 𝑂𝑆∗ × 𝑈𝑁𝐾
𝑂𝑆∗ + 𝑈𝑁𝐾

(12)

5.2. Experimental results

We compare our MAOSDAN with five cutting-edge open-set DA
algorithms, including OSBP (Saito et al., 2018), STA (Liu et al., 2019),
DAMC (Shermin et al., 2020), Unknown-Aware Domain Adversarial
Learning (UADAL) (Jang et al., 2022) and Self-Supervised-driven Open-
set Unsupervised Domain Adaptation (SSOUDA) (Wang et al., 2023).
OSBP employs adversarial learning to distinguish between unknown
target samples and known target samples. STA employs a progres-
sive weighting mechanism to effectively distinguish between samples
belonging to unknown and known classes, while also assigning im-
portance to their contribution in aligning feature distributions. On the
other hand, DAMC incorporates a weighting module that assesses the
unique domain characteristics to assign representative weights to tar-
get samples, facilitating positive transfers during adversarial training.
UADAL (Jang et al., 2022) aligns the source and the target-known dis-
tribution while simultaneously segregating the target-unknown distri-
bution in the feature alignment procedure. SSOUDA (Wang et al., 2023)
combines contrastive self-supervised learning with consistency self-
training for optical remote sensing scene classification and retrieval,
obtaining reliable unknown class samples for co-training. Additionally,
we conduct a comparative analysis between our proposed method,
MAOSDAN, and six widely recognized DA approaches. The six stan-
dard DA approaches includes Joint Adaptation Network (JAN) (Long
et al., 2017), Domain Adaptation Network (DAN) (Long et al., 2015),
Domain Adversarial Neural Network (DANN) (Ganin et al., 2016),
Conditional Domain Adaptation Network (CDAN) (Long et al., 2018),

https://github.com/rs-dl/MAOSDAN
https://github.com/rs-dl/MAOSDAN
https://github.com/rs-dl/MAOSDAN
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Table 3
Performance metrics on our collected dataset for open-set DA scenarios (ResNet-50):OS, OS*, UNK and HOS (%).

Method Standard domain adaptation Open-set domain adaptation

ResNet-50 JAN DAN DANN CDAN DALN PCLUDA STA OSBP DAMC UADAL SSOUDA MAOSDAN

A→N

𝑂𝑆 56.43 56.72 59.24 60.86 57.15 50.56 49.63 63.13 71.20 59.30 62.66 55.28 73.82
𝑂𝑆∗ 55.97 56.41 59.25 60.79 56.66 49.61 49.41 63.02 71.29 58.46 60.82 54.73 74.52
𝑈𝑁𝐾 66.89 63.72 59.04 62.50 68.39 72.42 54.59 65.51 57.53 78.73 68.09 67.93 73.17
𝐻𝑂𝑆 60.95 59.85 59.14 61.63 61.98 58.88 51.87 64.24 63.88 67.09 64.25 60.62 73.84

A→U

𝑂𝑆 56.80 62.44 65.70 66.80 72.95 58.21 64.88 66.40 71.64 67.88 75.04 67.96 78.20
𝑂𝑆∗ 55.39 63.15 65.39 67.00 73.08 57.54 66.23 65.62 72.15 66.46 75.17 70.23 78.46
𝑈𝑁𝐾 75.25 53.13 69.75 64.25 71.25 67.00 47.38 76.63 65.00 86.25 73.33 38.37 85.63
𝐻𝑂𝑆 63.81 57.71 67.50 65.60 72.15 61.91 55.24 70.69 68.39 75.07 74.24 49.63 79.17

N→A

𝑂𝑆 61.01 72.86 73.21 76.47 70.68 67.03 78.21 63.86 79.07 71.34 73.99 73.07 80.24
𝑂𝑆∗ 60.45 72.87 73.31 76.59 70.46 66.79 78.53 62.63 79.04 70.36 72.57 73.03 80.46
𝑈𝑁𝐾 73.94 72.57 71.02 73.63 75.75 72.43 70.80 92.04 79.69 88.76 78.86 73.81 89.20
𝐻𝑂𝑆 66.52 72.72 72.14 75.08 73.01 69.50 74.46 74.54 79.37 78.50 75.58 73.41 82.23

U→A

𝑂𝑆 35.76 59.66 48.61 60.72 52.86 37.08 70.85 53.77 66.85 60.59 56.97 58.24 68.03
𝑂𝑆∗ 34.47 60.41 48.63 60.70 52.68 34.30 72.85 51.67 66.76 58.91 55.69 59.21 67.82
𝑈𝑁𝐾 52.61 49.78 50.51 60.90 55.16 73.30 44.83 81.14 68.07 82.50 58.27 45.69 83.56
𝐻𝑂𝑆 41.65 54.58 49.47 60.80 53.89 46.73 55.50 63.13 67.41 68.73 56.95 51.58 74.87

U→N

𝑂𝑆 44.88 45.42 50.43 49.50 49.14 40.33 49.47 46.11 60.59 54.28 52.55 61.06 61.45
𝑂𝑆∗ 44.02 44.48 50.18 48.97 48.19 38.60 49.33 44.86 60.44 53.12 51.22 61.65 61.08
𝑈𝑁𝐾 63.03 65.07 55.58 60.53 69.01 76.60 52.44 72.44 63.70 78.48 72.14 48.63 76.10
𝐻𝑂𝑆 51.84 52.84 52.74 54.14 56.75 51.33 50.84 55.41 62.03 63.36 59.91 54.37 65.26

Avg

𝑂𝑆 50.98 59.42 59.44 62.87 60.55 50.64 62.61 58.65 69.87 62.68 64.14 63.12 72.36
𝑂𝑆∗ 50.06 59.47 59.32 62.81 60.21 49.37 63.27 57.56 70.04 61.46 63.09 63.77 72.47
𝑈𝑁𝐾 66.34 60.85 61.18 64.36 67.91 72.35 54.01 77.55 66.80 82.94 70.14 54.89 81.53
𝐻𝑂𝑆 56.95 59.54 60.20 63.45 63.56 57.67 57.58 65.60 68.21 70.55 66.43 57.92 75.07
Table 4
The efficiency of different DA methods (ResNet-50).

Method Number of
parameters (M)

GFLOPs Inference time
(ms per image)

ResNet-50 49.31 5.40 1.22
DAN 49.31 5.40 1.34
JAN 49.31 5.40 1.38
DANN 50.57 50.57 1.28
CDAN 60.33 6.03 1.28
STA 51.83 5.96 2.64
OSBP 49.31 5.40 1.29
DAMC 50.57 5.81 1.44
MAOSDAN (Ours) 50.57 5.81 1.32

Discriminator-free Adversarial Learning network (DALN) (Chen et al.,
2022), Pseudo-label Consistency Learning-based Unsupervised Domain
Adaptation (PCLUDA) (Hou et al., 2022). JAN focuses on aligning
the joint distributions of multiple domain-specific layers using a joint
maximum mean discrepancy. DAN employs an optimal multi-kernel
selection method to reduce the domain discrepancy through mean
embedding matching. DANN, in contrast, leverages a gradient reversal
layer to facilitate adaptation, but it may not effectively discriminate
between the source and target domains. Another approach, Deep Coral
adopts a linear transformation for aligning the statistical distribu-
tions of the source and target domains. On the other hand, CDAN
incorporates multilinear conditioning and entropy conditioning as two
conditioning strategies in its architecture. DALN (Chen et al., 2022)
reuses the category classifier as a discriminator, which achieves explicit
domain alignment and category separation through a unified objective,
enabling the DALN to leverage the predicted discriminative information
for sufficient feature alignment. PCLUDA (Hou et al., 2022) minimizes
the difference in probability distribution between the target domain
and its perturbed output by a pseudo-label self-training and consistency
regularization strategy, followed by adjusting the target domain’s de-
cision boundaries to the low-density region. In Table 3, in addition,
we include the Baseline (ResNet-50 (He et al., 2016)) model in our
evaluation, which serves as a reference point for comparison. It should
be emphasized that the Baseline model exclusively utilizes classification
loss without incorporating any domain adaptation techniques.
252
Table 3 presents the evaluation results of our dataset in five trans-
fer tasks for open-set domain adaptation, utilizing ResNet-50 as the
backbone model. As for the standard DA methods, CDAN (Long et al.,
2018) performs best in terms of 𝐻𝑂𝑆, with 6.61% higher than the
Baseline (a straight forward ResNet-50 model). Most of standard DA
methods achieve improvement, while some of them still lower than the
Baseline. For example, the 𝐻𝑂𝑆 of PCLUDA, JAN and DALN are lower
than the Baseline in the task of A → U with −8.57%, −6.10%, −1.90%,
respectively. The 𝑈𝑁𝐾 of JAN, DAN, DANN, DALN and PCLUDA are
lower than the Baseline in the task of N → A with −1.37%, −2.92%,
−0.31%, −1.51% and −3.14%, respectively. The outcomes obtained
from standard DA methods highlight the presence of significant ad-
verse transfer effects in open-set DA scenarios (refer to Section 5.4
for more information). As for open-set DA algorithms, our proposed
MAOSDAN attains the highest average 𝐻𝑂𝑆 of 73.08%, with 4.52% to
17.15% improvement compared to other three open-set DA methods.
Our MAOSDAN also shows superior 𝐻𝑂𝑆 on each transfer tasks except
U → A. In addition, MAOSDAN attains 18.12% gains compared to the
Baseline in terms of 𝐻𝑂𝑆. On the other hand, DAMC (Liu et al., 2019)
perform best in 𝑈𝑁𝐾 with an average accuracy of 82.94%, and its
𝑈𝑁𝐾 achieve higher score than our proposed MAOSDAN with regards
of A → N, A → U and U → N three tasks. However, its 𝑂𝑆∗ is relatively
lower than MAOSDAN (over -10%).

Furthermore, we list the efficiency (including the number of pa-
rameters, the FLOPs (floating point of operations) and the inference
time (ms per image)) of different DA methods using ResNet-50 in
Table 4. Obviously, our proposed MAOSDAN is comparable with other
existing DA methods in efficiency and model size, while achieves the
best performance among them (See Table 3).

5.3. Ablation studies

Here, we present the performance analysis (𝐻𝑂𝑆) of various exper-
iments conducted on our custom dataset for our novel MAOSDAN ap-
proach, utilizing ResNet-50 as the backbone architecture. The ablation
studies in Table 5 examine the contributions of different components,
namely A-OSBP, AAL, and AES, which correspond to attention-aware
OSBP, auxiliary adversarial learning, and adaptive entropy suppres-
sion, respectively. It is worth mentioning that the Baseline method
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Fig. 4. The accuracy (%) of MAOSDAN for our collected dataset in open-set DA scenarios under different hyper-parameters of 𝜆, 𝛼, 𝛽 and 𝛾.
Table 5
The performance (%) of 𝐻𝑂𝑆 on our collected dataset for the ablation studies of our
proposed method (ResNet-50).

A-OSBP AAL AES A → N A → U N → A U → A U → N Avg

× × × 63.88 68.39 79.37 67.41 62.03 68.21
✓ × × 67.78 74.71 80.21 71.02 64.71 71.67
× ✓ × 65.04 76.56 77.76 69.60 62.68 70.33
× × ✓ 70.10 71.57 77.12 69.97 63.50 70.45
✓ ✓ × 69.44 78.17 80.50 70.24 66.03 72.88
✓ × ✓ 73.27 79.36 82.19 72.70 65.34 74.57
× ✓ ✓ 72.98 77.37 76.44 74.33 64.89 73.20
✓ ✓ ✓ 73.84 79.17 82.23 74.87 65.26 75.07

(represented in the first row of Table 5) refers to the initial OSBP
approach (Saito et al., 2018) as described in Eq. (1).

5.3.1. The effectiveness of the A-OSBP
In contrast to the original OSBP, our enhanced OSBP incorporates

a novel re-weighting mechanism designed to enhance performance
in open-set domain adaptation scenarios. Additionally, our attention-
aware mechanism yields a significant improvement of 3.46% when
compared to the original OSBP. It is observable that our attention-
aware OSBP considerably increase the classification accuracy in chal-
lenging transfer tasks, demonstrating remarkable performance improve-
ments, such as A → N (+3.90%), which has more ‘‘unknown’’ classes
in the target domain. Furthermore, the attention-aware OSBP achieves
+2.55%, +4.12% and +1.87% respectively on the basis of AAL, AES and
AAL + AUS and with respect to the average 𝐻𝑂𝑆.

5.3.2. The effectiveness of the AAL
In contrast to prior approaches for open-set DA methods (Saito

et al., 2018; Kishida et al., 2021), we propose an auxiliary classifier
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to mitigate the negative transfer caused by ‘‘unknown’’ target samples.
As shown in Table 5, our AAL performs +2.12% better than OSBP,
especially attaining significant improvement on A → U (+8.17%). In
addition, the AAL achieves +1.21%, +2.75% and +0.50% improvements
respectively on the basis of A-OSBP, AES and A-OSBP + AUS with
respect to the average 𝐻𝑂𝑆.

5.3.3. The effectiveness of the AES
We introduce adaptive entropy suppression, which serves two pur-

poses: firstly, it improves the confidence of classification probabilities
for output classes, contributing to the classifier being more inter-
pretable for target data without annotations; secondly, it prevents
the forced minimization of entropy for ‘‘unknown’’ samples that pose
challenges in recognition. From Table 5, we can see that though the
performance drops on the transfer task of N→ A (−2.25%), our adaptive
entropy suppression increase the average 𝐻𝑂𝑆 of +2.24%. In addition,
the adaptive entropy suppression yields +2.90%, +2.87% and +2.19%
increment respectively based on A-OSBP, AAL and A-OSBP + AAL with
the respect of the average 𝐻𝑂𝑆.

5.3.4. Sensitive analysis
In this section, we conducted comprehensive ablation studies on

four crucial hyperparameters: 𝜆, 𝛼, 𝛽, and 𝛾. The performance of our
proposed MAOSDAN on our dataset, specifically in open-set domain
adaptation scenarios, was evaluated. Notably, we select the hyperpa-
rameters that achieve the highest average 𝐻𝑂𝑆 metric for all transfer
tasks. Fig. 4 illustrates the results of the 𝐻𝑂𝑆 metric corresponding to
the variations of these hyperparameters, as shown in Fig. 4. When 𝛼 =
0.1, 𝛽 = 2.0 and 𝛾 = 1.0, we assess a range of values for the parameter
𝜆, varying from 0.5 to 2.0, in our evaluation (Fig. 4(a)). It has been
observed that the setting 𝜆 = 1.0 outperforms other configurations,
demonstrating a noticeable improvement. Specifically, when 𝜆 = 1.0,
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Fig. 5. The transfer effect (%) of different DA methods for our collected dataset in open-set DA scenario.
Fig. 6. The accuracy (%) of each class for five different methods (including ResNet-50, PCLUDA, DALN, SSOUDA and MAOSDAN) for all transfer tasks. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
𝛽 = 2.0, and 𝛾 = 1.0, the evaluation is conducted across various values
f 𝛼, ranging from 0.01 to 2.0 (refer to Fig. 4(b)). It is observable that
hen the 𝛼 < 0.1, the accuracy dramatically drops. In addition, the
𝑂𝑆 of 𝛼 = 1.0 is slightly higher than 𝛼 = 0.5. When 𝜆 = 1.0, 𝛼 = 0.1

and 𝛾 = 1.0, we assess the influence of 𝛽 with different values ranging
from 0.1 to 3.0 (Fig. 4(c)). We find that there is little difference among
the performance of different 𝛽 values, while the 𝐻𝑂𝑆 of 𝛽 = 2.0 is
slightly higher than others. Finally, a sensitivity analysis is conducted
on various values of 𝛾, ranging from 0.01 to 2.0, while keeping 𝜆 = 1.0,
= 0.1, and 𝛽 = 2.0 fixed. Fig. 4(d) reveals that accuracy significantly

rops when 𝛾 < 1.0, and the 𝐻𝑂𝑆 of 𝛾 = 1.0 is slightly higher than
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that of 𝛾 = 2.0. Based on these findings, we establish a set of balanced
hyperparameters for all our experiments: 𝜆 = 1.0, 𝛼 = 0.1, 𝛽 = 2.0, and
𝛾 = 1.0. This ensures consistent and reliable results across our study,
avoiding any potential bias or inconsistency.

5.4. Transfer effect

In this part, we point out the positive transfer effect proxies for
aforementioned DA approaches, and deeply analysis whether there
exists the negative transfer effect, especially for the closed set DA
approaches in 𝑈𝑁𝐾 of the open-set DA problem. The Negative Transfer
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Table 6
The performance (%) of 𝐻𝑂𝑆 on different backbones along with different open-set algorithms.
Backbones Methods A → N A → U N → A U → A U → N Avg

ResNet-50

Baseline 60.95 63.81 66.52 41.65 51.84 56.95
DANN 61.63 65.60 75.08 60.80 54.14 63.45
OSBP 63.88 68.39 79.37 67.41 62.03 68.21
MAOSDAN 73.84 79.17 82.23 74.87 65.26 75.07

ResNet-101

Baseline 60.10 65.22 69.42 52.23 53.06 60.01
DANN 63.27 68.15 76.50 61.90 54.39 64.84
OSBP 62.55 68.00 58.97 64.31 59.33 62.63
MAOSDAN 68.78 70.95 79.56 65.89 64.14 69.86

ResNeXt-101

Baseline 77.04 64.14 71.18 54.67 54.53 64.31
DANN 65.34 70.68 77.72 61.98 58.00 66.74
OSBP 75.10 76.86 78.82 72.87 66.63 74.06
MAOSDAN 79.68 75.66 78.68 73.85 66.31 74.84

EfficientNet

Baseline 61.12 67.69 74.03 52.88 52.94 61.73
DANN 64.39 68.24 78.90 59.05 57.62 65.64
OSBP 66.16 74.77 79.39 63.13 63.82 69.45
MAOSDAN 68.85 75.82 76.37 64.06 64.20 69.86
c
F
a
f
S
P
o
f
t
o
m
t
a
T
c

6
w

s
h
a
O
t
a
a
e
2
i
u
b
R
b
w
o
d
u
s
f
w
a
r
M
c

Effect (NTE) describes the transferability of the trained model com-
pared to the Baseline method (a straight forward deep learning model,
i.e., ResNet-50), which only utilizes the source domain data without
any DA strategies. Therefore, the NTE can be calculated as:

NTE = ACCOSDA − ACCBaseline (13)

where ACCOSDA and ACCBaseline are the performance (such as 𝑂𝑆, 𝑂𝑆∗,
𝑈𝑁𝐾 and 𝐻𝑂𝑆) of the open set DA methods and the Baseline method.
If the value of NTE is greater than zero, it indicates that the DA method
demonstrates a positive transfer impact in the open-set DA scenarios.
On the contrary, NTE < 0 represents the DA method results in a NTE
in the open set DA scenario not only without any improvement but
with accuracy deterioration. Fig. 5 presents the performance evaluation
of the NTE metric for various DA methods, encompassing both closed-
set and open-set approaches. It is convincing and easy-understand that
all of DA methods achieve positive transfer effect in terms of 𝑂𝑆 and
𝑆∗ (as shown in Fig. 5(a) and (b)) since they minimize the domain
ap between the source and the target domains. However, as for the
valuation of 𝑈𝑁𝐾 (see Fig. 5(c)), three closed DA methods including
AN, JAN and DANN encounter severe NTE ranging from −1.98% to

−5.49%. In the task of A → U, all closed set DA methods suffer from
NTE in terms of 𝑈𝑁𝐾, with −4.00% ∼ −22.13%. In addition, OSBP
is also confronted with NTE. In the task of A → N, two open set

A algorithms are both prone to the NTE problem in terms of 𝑈𝑁𝐾,
hich indicates that general open set DA methods are not sure to gain

mprovement in remote sensing applications. Owning to the positive
ffect generated from 𝑂𝑆∗, the average scores of 𝐻𝑂𝑆 (see Fig. 5(d))
re all better than the Baseline except some NTE cases in the tasks
f A → N and A → U. Our proposed MAOSDAN yields the highest
ransfer effect in all four evaluations, with +21.38%, +22.41%, +15.19%
nd +18.12% for 𝑂𝑆, 𝑂𝑆∗, 𝑈𝑁𝐾 and 𝐻𝑂𝑆, respectively. To this end,
irectly adopting closed DA approaches will result in relatively severe
erformance deficiency in the open set DA tasks, especially for the
ccuracy of 𝑈𝑁𝐾. Our experiments also prove the necessity for our
roposed components introduced in Section 3 in MAOSDAN to prevent
rom the negative transfer effect in open set DA scenarios.

. Discussion

.1. The performance of different classes

Here we discuss the performance of each class instead of only
resenting overall accuracy. Fig. 6 displays the accuracy (%) of each
lass for five different methods (including ResNet-50 (He et al., 2016),
CLUDA (Hou et al., 2022), DALN (Chen et al., 2022), SSOUDA (Wang
t al., 2023) and MAOSDAN) for all transfer tasks. We can observe
255

hat the accuracy of ‘‘unknown’’ class outperforms other methods with i
onsiderably gains (the purple bar of the last group in each figure in
ig. 6). However, the accuracies of ‘‘known’’ classes for MAOSDAN
re not always higher than other methods. For example, in the trans-
er task of U→N, the accuracy of MAOSDAN is lower than that of
SOUDA (Wang et al., 2023) for ‘‘Baseball Diamond’’, ‘‘Mobile Home
ark’’, ‘‘Intersection’’ and ‘‘Chaparral’’. As a matter of fact, the accuracy
f ‘‘known’’ classes (𝑂𝑆∗) and ‘‘unknown’’ class (𝑈𝑁𝐾) are two key
actors to evaluate the effectiveness of open-set scenarios. Usually,
he higher accuracy of ‘‘known’’ classes means the lower accuracy
f ‘‘unknown’’ class, while the higher accuracy of ‘‘unknown’’ class
eans the lower accuracy of ‘‘known’’ classes. To this end, we adopt

he harmonic mean of 𝑂𝑆∗ and 𝑈𝑁𝐾 to represent the ability of the
lgorithm’s performance on both known and ‘‘unknown’’ samples. From
able 3, our proposed MAOSDAN achieves the highest average 𝐻𝑂𝑆
ompared to other SOTA methods.

.2. The performance of different backbones and image degradation along
ith our proposed MAOSDAN

In this paper, we actually focus on designing the better open-
et domain adaptation algorithm using multi-adversarial learning. We
ope that our proposed MAOSDAN could perform higher classification
ccuracy (including both ‘‘known’’ classes and the ‘‘unknown’’ class).
ur MAOSDAN is a plug-and-play algorithm that could easily applied

o other network architectures. In addition, we list different network
rchitectures along with our proposed MAOSDAN in open-set domain
daptation scenarios for all transfer tasks, including ResNet-50 (He
t al., 2016), ResNet-101 (He et al., 2016), ResNeXt-101 (Xie et al.,
017) and EfficientNet (Tan and Le, 2019). ResNet (He et al., 2016)
s a classical backbone that have been used in many applications and
sually used to evaluate many plug-and-play algorithms. ResNet could
e defined by different layers, such as ResNet-50 and ResNet-101.
esNeXt-101 (Xie et al., 2017) is constructed by repeating a building
lock that aggregates a set of transformations with the same topology,
hich results in a homogeneous, multi-branch architecture that has
nly a few hyper-parameters to set. EfficientNet (Tan and Le, 2019) is
esigned by neural architecture search, using a new scaling method that
niformly scales all dimensions of depth, width and resolution using a
imple yet highly effective compound coefficient. Table 6 lists the per-
ormance (𝐻𝑂𝑆) of all abovementioned network architectures along
ith different open-set algorithms. Notably, they all belong to plug-
nd-play algorithms, including our proposed MAOSDAN. Experimental
esults show that no matter which network architecture is used, our
AOSDAN performs best among different open-set algorithms, which

an prove its generalization and versatility.
This paper focuses on open-set domain adaptation for remote sens-
ng images, where there is a partial overlap between the label space
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Table 7
Comparisons the performance (%) of 𝐻𝑂𝑆 among different image degradations (including Gaussian noise and random occlusion) for our
proposed MAOSDAN.
Image Degradation A → N A → U N → A U → A U → N Avg

Plain 73.84 79.17 82.23 74.87 65.26 75.07
Gaussian Noise (5%) 71.67 76.11 80.95 72.69 64.83 73.25
Gaussian Noise (10%) 69.86 77.65 78.89 73.81 63.00 72.64
Random Occlusion (10 × 10 pixels) 65.94 76.86 79.29 70.56 63.86 71.30
Random Occlusion (20 × 20 pixels) 64.75 76.42 78.38 69.29 63.29 70.43
Table 8
Accuracy (%) for all the classes on Office-31 (Saenko et al., 2010) for open-set domain adaptation scenarios (ResNet-50).
Method A→D A→W D→A D→W W→A W→D Avg

ResNet-50 85.2 82.5 71.6 94.1 75.5 96.6 84.2

Standard domain adaptation DANN 86.5 85.3 75.7 97.5 74.9 99.5 86.60
RTN 89.5 85.6 72.3 94.8 73.5 97.1 85.4

ATI 84.3 87.4 78.0 93.6 80.4 96.5 86.7

Open-set domain adaptation OSBP 88.6 86.5 88.9 97.0 85.8 97.9 90.8
STA 93.7 89.5 89.1 97.5 87.9 99.5 92.9
Ours 93.2 90.4 90.6 98.3 87.4 99.5 93.2
Table 9
Accuracy (%) for all the classes on Office-Home (Venkateswara et al., 2017) for open-set domain adaptation scenarios (ResNet-50).
Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

ResNet-50 53.4 69.3 78.7 61.4 61.8 71.0 64.0 52.7 74.9 70.0 51.9 74.1 65.3

Standard domain DANN 54.6 69.5 80.2 61.9 63.5 71.7 63.3 49.7 74.2 71.3 51.9 72.9 65.4
adaptation CDAN 54.4 67.0 78.2 62.0 62.7 70.9 61.9 50.8 74.8 69.1 51.6 72.4 64.6

Open-set ATI 55.2 69.1 79.2 61.7 63.5 72.9 64.5 52.6 75.8 70.7 53.5 74.1 66.1
domain OSBP 56.7 67.5 80.6 62.5 65.5 74.7 64.8 51.5 71.5 69.3 49.2 74.0 65.7

adaptation STA 58.1 71.6 85.0 63.4 69.3 75.8 65.2 53.1 80.8 74.9 54.4 81.9 69.5
Ours 62.1 69.3 85.2 65.5 69.6 76.2 65.3 59.2 80.4 74.8 56.0 81.0 70.4
→
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of the target domain and that of the source domain. Since this paper
design a new algorithm to transfer knowledge across different do-
mains, our proposed method could tackle multi-sensor, multi-temporal
or cross-regional remote sensing scenarios as they do not rely on
labels or annotations in the target domain. Our proposed method
(i.e., MAOSDAN) tries to address the various conditions, such as dif-
ferent resolutions, different sensors, different locations and different
photographing time, etc. To this end, our proposed method is ro-
bust to meet various changing conditions for remote sensing images
classification. On the other hand, we have also added experiments
about performance of our proposed MAOSDAN under different image
degradations including adding noises and occlusions. We add Gaussian
noise (5% and 10%) and random black occlusions with 10 × 10 pixels
and 20 × 20 pixels. Notably, we only conduct image degradation for
target domain, which could evaluate the method’s capacity of meeting
the various variabilities and occlusions. From Table 7, we observe that
even though we add different level degradations for images, the perfor-
mance degradations are lower than 5%, indicating that our proposed
MAOSDAN has strong robustness and generalization to overcome the
various variabilities and occlusions.

6.3. The performance of MAOSDAN on standard open-set DA datasets

We also validate MAOSDAN on standard open-set DA datasets, such
as Office-Home (Peng et al., 2019) and Office-31 (Saenko et al., 2010),
which is listed in Table 8 and 9. Office-31 consists of 31 classes in 3
domains: Webcam (W), DSLR (D) and Amazon (A). Similar to the same
data protocol in previous open-set DA publications (Saito et al., 2018),
the classes with labels 11–31 in alphabetical order are recognized as
‘‘unknown’’ classes in the target domain. Office-Home (Venkateswara
et al., 2017) is a larger-scale challenging domain adaptation dataset
than Office-31. There are four domains (Art (A), Clipart (C), Product
(P) and Real-World (R)) with 65 classes. We follow Liu et al. (2019) to
construct the target domain using the first 40 categories in alphabetical
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order, where the first 25 classes in alphabetic order are recognized e
as known classes and the remaining 40 classes are recognized as
‘‘unknown’’ class. As listed in Tables 8 and 9, our proposed MAOSDAN
yields highest average accuracy in both two standard open-set DA
dataset, i.e., Office-Home and Office-31, indicating that our MAOSDAN
is more robust and effective than other state-of-the-art open-set DA
approaches.

6.4. Feature visualization

In Fig. 7, we present the visualizations of network features extracted
from the final convolutional layer for three different transfer tasks: A
U, N → A, and U → A. In domain adaptation scenarios, we strive

o transfer the knowledge from the source domain (with labels) to the
arget domain (without labels), and only focus on the performance for
he target domain. Therefore, we only visualize the feature distribution
or the target domain using t-SNE, which is consistent to existing
tudies (Lin et al., 2020; Makkar et al., 2021; Bai et al., 2022). These
isualizations showcase the feature transferability of ResNet-50 (Base-
ine), DAN, OSBP, and our proposed method MAOSDAN (Ours) using
he t-SNE visualization technique (Van der Maaten and Hinton, 2008;
onahue et al., 2014). The visualization illustrates the ‘‘unknown’’
lasses in an open-set domain adaptation scenario. The yellow points
epresent these ‘‘unknown’’ classes. It is evident from the visualization
hat as we progress from the ResNet-50 model on the left to our
roposed MAOSDAN model on the right, the target domain samples
ecome increasingly difficult to distinguish. Specifically, in the transfer
ask from A to U, the features generated by MAOSDAN exhibit 14 dis-
inct clusters with well-defined boundaries. In addition, we can observe
hat open set DA methods considerably performs better closed set DA
pproaches in general. The improved visual performance exhibited by
AOSDAN demonstrates the efficacy of our novel algorithms in gen-

rating highly transferable representations and mitigating the adverse

ffects of negative transfer in open-set domain adaptation scenarios.
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Fig. 7. The t-SNE visualization of features for three transfer tasks (from top to bottom: A → U, N → A and U → A) learned by the Baseline (ResNet-50), DAN, OSBP and MAOSDAN
(Ours) (from left to right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
6.5. Potential practical application scenarios in the remote sensing commu-
nity leveraging MAOSDAN

Open-set DA issue is a more challenging and practical task in
transfer learning. While the domain adaptation problem has been ex-
tensively explored and examined in the context of remote sensing image
classification in recent years, there is a lack of empirical studies that
specifically address the situation where the label set of the target do-
main includes that of the source domain. Nevertheless, it is common to
encounter situations regarding remote sensing fields where transferring
our model to a new dataset that may include novel classes that were not
seen during the training phase is necessary. Utilizing conventional DA
methods without proper considerations may lead to negative transfer
effects when dealing with ‘‘unknown’’ classes in the target domain,
as the label distributions between the source and target domains are
disjoint. This mismatch can significantly deteriorate the transferability
of the model and impede its performance.

For instance, if we are supposed to conduct tree species classifica-
tion using remote sensing images (or forest inventory), in which few
people have been gone there, obviously, determining the precise tree
species beforehand is an insurmountable challenge for us. In addition,
the data-bank of tree species from other regions may not include all
the tree species in the target domain, where there probably exist brand
new tree species. Hence, we employ open-set DA techniques to identify
the tree species in the underpopulated forest. This approach eliminates
the need for additional annotations and human interpretation, as well
as mitigates the adverse effects of negative transfer that typically arise
from conventional DA methods. On the other hand, when conducting
land cover and land use mapping, it is common to collect samples of
various types in metropolitan areas like Shanghai and New York. How-
ever, when attempting to transfer this knowledge to micropolitan areas
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such as Kashgar and Anchorage, new land cover and land use types
may emerge that were not present in the metropolitan areas. These
new types, such as desert and tundra, introduce unique challenges in
the mapping process. Therefore, recognizing these ’’unknown’’ classes
is quite vital in remote sensing applications and open set DA algorithm
can help us to better tackle this issue.

In addition, gathering samples for the target domain is a challenging
and resource-intensive task, requiring significant time and effort. Ad-
ditionally, obtaining accurate information regarding the precise label
set of the target domain can be elusive. To this end, our MAOSDAN
algorithm fills a crucial gap in the field of open-set domain adapta-
tion for scene classification in remote sensing images. In contrast to
existing DA algorithms, MAOSDAN offers effective solutions to mitigate
the negative transfer effect caused by the presence of ‘‘unknown’’
classes in the target domain. Additionally, MAOSDAN demonstrates
superior performance in accurately distinguishing between ‘‘known’’
and ‘‘unknown’’ classes. In contrast to other existing open-set domain
adaptation algorithms, our proposed MAOSDAN demonstrates superior
performance across standard domain adaptation datasets. This signif-
icant improvement establishes MAOSDAN as a robust and practical
method that holds great promise in both the computer vision and
remote sensing communities.

6.6. Limitations and future works

MAOSDAN is an encouraging domain adaptation method that
demonstrates highly promising results not only for transferring the
source domain knowledge to the target domain without annotations,
but also for scenarios where the label set of the source domain is a
subset of the target domain. However, our proposed MAOSDAN and the
experimental results introduced in Section 5 still exist some limitations
and could be further improved.
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1. From the perspective of data, we only adopt RGB-band satellite
images in this paper and only capture the visible representative
features and texture. Given the limitation of the visible-band-
only images in remote sensing applications, we will evaluate our
proposed MAOSDAN for other typical kinds of remote sensing
images, such as multi-spectral or hyper-spectral images, which
may exploit the inherent properties among the different geo-
objects. Also, as our MAOSDAN is a plug-and-play algorithm
that could easily applied to other network architectures and
other kinds of data, we will try to applied our MAOSDAN to
3D point cloud data for segmentation or detection tasks, or
long-time-series data for time series analysis in the future.

2. From the perspective of methodology, existing open-set do-
main adaptation methods focus on exploring novel samples
to achieve ‘‘known’’ and ‘‘unknown’’ separation (‘‘unknown’’
class detection) and adapting the ‘‘known’’ class distribution
(domain alignment). Including our proposed MAOSDAN, most
of existing open-set domain adaptation methods only consider
‘‘known’’ class semantics in the source domain, while ignor-
ing the ‘‘unknown’’ class spreading everywhere. This leads to
a semantic-level bias between the ‘‘known’’ and ‘‘unknown’’
class, further yielding a biased domain transfer for open-set
domain adaptation. In the future, we will observe and formu-
late the ever-overlooked semantic-level bias and make more
improvements for open-set domain adaptation scenarios.

3. From the perspective of transfer paradigm, we only consider
the open-set domain adaptation scenario, where the label set
of source domain is a subset of that of target domain, which
means there exists ‘‘unknown’’ class in the target domain. Some
researchers have also exploited the partial domain adaptation
scenarios (Hu et al., 2020; Zheng et al., 2022), where the label
set of target domain is a subset of that of source domain,
which means there exists outlier class in the source domain.
Furthermore, universal domain adaptation scenario (Xu et al.,
2023) generalizes above two settings, where the source and
target domains usually share some labels, but at the same time
each has a private set of labels that the other does not have,
which is not restricted to any prior knowledge. To this end, we
will explore the more challenging domain adaptation scenarios
and utilize the strategies from MAOSDAN to new transfer tasks.

7. Conclusion

In this paper, we introduce a novel approach called MAOSDAN
(Multi-Adversarial Open-Set Domain Adaptation Network) for scene
classification in the field of remote sensing. Our algorithm addresses the
challenge of partial label set overlap between the target and source do-
mains in domain adaptation scenarios. Our MAOSDAN consists of three
major components. First, we employ an attention-aware OSBP to better
distinguish the ‘‘unknown’’ and ‘‘known’’ samples for the target domain.
Second, we design an auxiliary adversarial learning to prevent from the
negative transfer effect caused by forcefully aligning the ‘‘unknown’’
target sample by a threshold as most existing open-set DA approaches.
Finally, we adopt an adaptive entropy suppression to increase the prob-
ability of samples and prevent some samples from being mistakenly
classified (such as ‘‘unknown’’ target samples). To alleviate forceful
entropy minimization, it also alleviates those difficult to distinguish
as ‘‘known’’ or ‘‘unknown’’ samples to be mistakenly classified. To
evaluate the effectiveness of our proposed MAOSDAN, we conducted
experiments using a test dataset comprising three publicly available
remote sensing datasets: NWPU-RESISC45, AID, and UC Merced. Our
method achieved an average 𝐻𝑂𝑆 of 75.07%, surpassing other existing
pen-set DA approaches by an average 𝐻𝑂𝑆 improvement ranging

from 4.52% to 17.15%. Moreover, our method outperformed the base-
line CNN model by a significant margin, demonstrating a substantial
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gain of 18.12% in performance. Our experimental findings demonstrate
that our proposed MAOSDAN method exhibits significant promise in
tackling a practical and widely applicable challenge, specifically when
the target domain comprises samples from classes that are not present
in the source domain. In our future research, we aim to investigate the
capabilities of our MAOSDAN in real-world open-set domain adaptation
scenarios, specifically focusing on applications in the remote sensing
domain. These scenarios will involve diverse challenges such as lim-
ited annotations, multi-temporal data, multiple sensors, and various
regions. Some of the specific applications we plan to explore include
tree species classification, land cover mapping, and land use mapping.
By addressing these practical challenges, we hope to further validate
and extend the effectiveness of MAOSDAN in real-world settings.
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