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Abstract— Although domain adaptation approaches have been
proposed to tackle cross-regional, multitemporal, and multisensor
remote sensing applications since they do not require any human
interpretation in the target domain, most current works assume
identical label space across the source and the target domains.
However, in real-world applications, we often transfer knowledge
from a large-scale dataset with rich annotations to a small-scale
target dataset with scarcity of labels. In most cases, the label
space of the source domain is usually large enough to subsume
that of the target domain, which is termed partial domain
adaptation. In this article, we propose a new partial domain
adaptation algorithm for remote sensing scene classification
and our proposed method contains three major parts. First,
we employ a progressive auxiliary domain module to alleviate
the negative transfer effect caused by outlier classes. Second,
we adopt an improved domain adversarial neural network
(DANN) with multiweights to better encourage domain confusion.
Last but not least, we design an attentive complement entropy
regularization to improve the prediction confidence for samples
and avoid untransferable samples (such as the samples belong-
ing to outlier classes in the source domain) being mistakenly
classified. We collect three common remote sensing datasets
to evaluate our proposed method. Our method achieves an
average accuracy of 79.36%, which considerably outperforms
other state-of-the-art partial domain adaptation methods with an
average accuracy improvement of 1.90%-12.45% and attaining
a 13.67% gain compared to the straightforward deep learning
model (ResNet-50). The experiment results indicate that our
approach shows promising prospects for solving more general
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and practical domain adaptation problems where the label space
of the source domain subsumes that of the target domain.

Index Terms— Adversarial learning, deep learning, negative
transfer effect, partial domain adaptation, remote sensing, scene
classification.

I. INTRODUCTION

LTHOUGH deep learning algorithms have already been

proved to be highly successful over a wide variety of
tasks in the remote sensing field [2], [3], [4], [5], [6], it requires
manual annotations in the training phase for a particular
distribution (source domain) to learn effective representations.
However, when directly applying models obtained from source
domains to target domains, models will lose their accuracy
due to different data distributions and variances caused by
different sensors, surface environment, and so on. For example,
as shown in Fig. 1, remote sensing images with the same anno-
tations but derived from different datasets (i.e., AID [7] and
NWPU-RESISC45 [8]) show significant differences in spectral
distributions. We can easily observe the notable discrepancy
in colors, textures, and other characteristics between these two
different remote sensing datasets. Furthermore, we also display
the spatial texture information differences between these two
datasets with respect to the same specific category. The light
blue, orange, and light green histograms, respectively, repre-
sent the mean histogram of max, contrast, and homogeneity
values through gray-level co-occurrence matrix (GLCM) [1]
in one specific category. Nevertheless, one common solution
for this dilemma is to fine-tune pretrained networks on task-
specific datasets, and it may be impractical because of pro-
hibitively expensive label collection.

Fortunately, the domain adaptation approach provides us a
way to deal with the abovementioned problem by seeking
to minimize the discrepancy in the absence of accessing
the target label information [9], [10], [11], [12]. Existing
domain adaptation approaches generally focus on the standard
domain adaptation, where the source label space is equal to
the target label space. However, with the development of
big data, large-scale datasets with abundant labels become
available, and in most cases, the label space of the source
domain is usually large enough to subsume that of the tar-
get domain, which is termed partial domain adaptation. For
example, we often need to transfer knowledge of deep neural
networks from a large-scale dataset with rich annotations
(e.g., ImageNet [13]) to a small-scale target dataset with
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Spectral difference and texture difference between two different remote sensing image datasets [i.e., AID (Left) and NWPU-RESISC45 (Right)] in

the same category, for instance, airport, industrial, and river. The first line displays image examples for these categories. The middle line displays spectral
information. The red, green, and blue histograms, respectively, represent the mean histogram of red, green, and blue bands in one specific category. The x-axis
denotes the pixel values ranging from O to 255 and the y-axis represents the statistics of times for each pixel value. The last line displays texture information.
The light blue, orange, and light green histograms, respectively, represent the mean histogram of max, contrast, and homogeneity values through GLCM [1]

in one specific category.

scarcity of annotations (e.g. AID [7] or NWPU-RESISC45 [8]
for remote sensing community). As shown in Fig. 2, partial
domain adaptation (bottom) is more general and challeng-
ing than standard domain adaptation (top) since the outlier
source classes (e.g., “Island” and “Snowberg”) will produce
unpleasant impact when discriminating the classes of the target
domain. Therefore, there are two major difficulties in partial
domain adaptation scenarios. The one is that the outlier source
classes will make the well-known negative transfer bottleneck
more prominent. The other is that it is nontrivial to identify
which classes are outlier source classes since the target classes
are unknown during training.

In practical applications, partial domain adaptation methods
have a great potential for remote sensing applications than pre-
viously standard domain adaptation methods. For example, the
label space of the existing remote sensing dataset is not usually
identical to our particular tasks. Until now, we have 30-m
land cover annotations for 11 land cover types in 2013 [14].
When we directly adopt domain adaptation approaches to
transfer the knowledge from the previous samples to map
a particular country, city, or region (such as New York) in
different years, the samples of some classes (such as snow/ice
and tundra) do not belong to the target domain, which may
inevitably cause negative transfer effect. Some researchers may
manually remove the samples of unnecessary classes before
applying domain adaptation [15], but it is labor-consuming
and depends on a piece of prior knowledge. In many cases,
we even do not know which part of the source label space is
shared with the target label space since their annotations are
unavailable during the training progress. For example, if we
want to make a forest inventory (tree species classification)
where few people have been there by using remote sensing

images, it is obviously impossible for us to know the exact
tree species in advance. The best technique is that we utilize
the rich tree species data bank collected from other regions
and adopt partial domain adaptation algorithms to map the tree
species in the depopulated forest, which not only saves human
interpretation and extra annotations but also eliminates the
negative transfer effect caused by standard domain adaptation
approaches.

In this article, we emphasize the partial domain adaptation
problem, that is, the label space of the source domain is
a subspace of that of the target domain. According to the
necessary of partial domain adaptation scenarios in the remote
sensing domain and the characteristics of remote sensing
images, we make corresponding optimizations from them. To
sum up, our contributions in this context can be highlighted
as the following three aspects.

1) We propose a partial domain adaptation algorithm for
remote sensing scene classification to address the par-
tial domain adaptation scenarios. To the best of our
knowledge, this work is among the first attempts on the
partial domain adaptation issue in the remote sensing
community.

We design a progressive auxiliary domain module
(PADM) simply borrowed from the source domain
dataset, alleviating the imbalanced class problem in
partial domain adaptation scenarios. We also improve
the domain adversarial neural network (DANN) by two
kinds of weighting schemes and design the attentive
complement entropy regularization (ACER).

We conduct extensive experiments on three public
remote sensing datasets (i.e., AID, NWPU-RESISC45,
and UC Merced). Our method attains a 13.67%

2)

3)
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Fig. 2. Standard domain adaptation scenario (Top) and the partial domain
adaptation scenario (Bottom). In the standard domain adaptation scenario,
the source label space is equal to the target label space, while in the partial
domain adaptation scenario, the target label space is a subset of the source
label space. The partial domain adaptation scenario is difficult since the source
domain may have some outlier classes not appearing in the target domain,
e.g., “Island” and “Snowberg.” These outlier source classes will make the
well-known negative transfer bottleneck more prominent. Another technical
difficulty is that it is nontrivial to identify which classes are outlier source
classes since the target classes are unknown during training.

gain compared to the straightforward CNN model
(ResNet-50) and yields 1.90%-12.45% improvements
compared to other state-of-the-art partial domain adap-
tation methods.

In the remainder of this context, we first present the
related works in Section II. Then, we elaborate our proposed
method in Section III, and introduce our collected dataset in
Section IV. In Section V, we analyze the performance of
our proposed method and compare it with other state-of-the-
art partial domain adaptation approaches and other standard
domain adaptation methods, followed by disclosing the neg-
ative transfer effect and further discussions in Section VI.
Finally, we summarize our work in Section VII.

II. RELATED WORK
A. Domain Adaptation

Domain adaptation approaches emphasize aligning the
model to new data distributions without utilizing a large
number of labor-consuming annotations and recently has been
paid much attention in the machine learning domain [9],
[16], [17]. A rich line of domain adaptation methods can
help to diminish the discrepancy between the source domain
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and the target domain through two major approaches, either
based on moment matching or adversarial learning. Moment
matching-based domain adaptation approaches aim at min-
imizing the distribution discrepancy in feature space [18],
[19], [20], [21], [22], [23]. Adversarial learning-based domain
adaptation approaches focus on incorporating a classifier in
the source domain with gradient reversal to confuse a domain
discriminator. The discriminator (i.e., a binary classifier) can
identify whether the input image comes from the source
or the target domain. After applying adversarial learning,
it cannot recognize different domains well [24], [25], [26],
[27], [28], [29]. At present, the adversarial learning-based
domain adaptation approaches have become a mainstream field
of DA issues.

However, the aforementioned domain adaptation approaches
generally focus on the standard domain adaptation, where the
source domain and the target domain share the identical label
space. In real applications, especially in the big data era, the
label space of the source domain is usually larger than that
of the target domain in most cases. The standard domain
adaptation no longer meets the requirement of mostly cross-
domain tasks and more attention needs to be paid to the partial
domain adaptation scenario.

B. Partial Domain Adaptation

Different from standard domain adaptation, in partial
domain adaptation scenarios, the label space of the target
domain is a subset of that of the source domain. Several
methods have been proposed to solve the partial domain adap-
tation problem in the computer vision community. Existing
partial domain adaptation methods concentrate on reducing
the training weights for the classes or samples that are not
considered in the label space of the target domain. For
example, selective adversarial network (SAN) [30] employs
a multidiscriminator weighted by the percentages of predicted
results to the target domain. Importance weighted adversarial
net (IWAN) [31] only utilizes a domain discriminator weighted
by the probability of being a target sample. Partial domain
adaptation network (PADA) [32] adds the average predictions
of the target domain simultaneously to the source classifier
and the domain discriminator. Different from PADA, exam-
ple transfer network (ETN) [33] and balanced adversarial
alignment and adaptive uncertainty suppression (BA3US) [34]
adopted an entropy minimization principle to reweight the
source classifier and the domain discriminator. Deep residual
correction network (DRCN) [35] plugs one residual block into
the source network along with the task-specific feature layer,
which effectively enhances the adaptation from source to target
and explicitly weakens the influence from the irrelevant source
classes. Other works employ reinforcement learning [36],
[37], generative adversarial network (GAN) [38], or graph
convolutional network (GCN) [39] to deal with partial domain
adaptation scenarios.

To date, most of the existing efforts tackle partial domain
adaptation by reducing the weights for the outlier classes in
the source domain. They are admittedly quite effective but
constitute only one side of the coin. These methods heavily
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rely on high-accuracy “pseudo” target prediction results to
acquire suitable weights, while rare attention has been paid
to adding the outlier classes during the adversarial learning
module, which pursues the balance between label distributions
across the source and the target domains.

C. Domain Adaptation in Remote Sensing

Although researchers are committed to finding solutions
for remote sensing image classification, two major difficul-
ties prevent their efforts from achieving a wide range of
applications [40]. On one hand, labeled data are not always
adequate for each scenario. On the other hand, data acquired
with different sensors under different environments put high
demand for the generalization ability of the models. Therefore,
domain adaptation has been introduced into the remote sensing
field to deal with large-scale and long-time-series applications
using multisource and multitemporal remote sensing images,
in which differences in ground environment and photographed
instrument may readily impact the model’s transferable capac-
ity [41]. Nowadays, domain adaptation effectively minimizes
the distribution gaps between images due to different sensors
and conditions and emerges in all kinds of remote sensing
applications ranging from classification [42], [43], [44], [45],
[46], [47], [48], [49], semantic segmentation [50], [51], [52],
[53], [54], [55], object detection [56], [57], [58], [59], and
regression tasks [60], [61]. Domain adaptation algorithms have
been proven to be effective and vital in cross-regional, large-
scale, and multitemporal remote sensing applications.

In the remote sensing community, the off-the-shelf domain
adaptation methods mainly concentrate on the standard domain
adaptation issue. Although works have strived into some
advanced transfer learning scenarios in the remote sens-
ing field, such as multisource domain adaptation [62], [63],
multitarget domain adaptation [64], [65], open-set domain
adaptation [66], [67], and domain generalization [68]. As for
partial domain adaptation, only coordinate partial adversarial
domain adaptation (CPADA) [69] has explored the potential
in the satellite images classification. However, the reweighting
strategy of CPADA is quite similar to PADA [32], and CPADA
only evaluates one transfer task (i.e., from NWPU-RESISC45
[8] to UC Merced [70]) for different remote sensing datasets.
In this context, we propose a new partial domain adaptation
algorithm for remote sensing scene classification to eliminate
the negative transfer effect brought by outlier classes in the
source domain, which is a more intractable but practical task
in real-world applications. To the best of our knowledge, this
work is one of the first attempts adopting the partial domain
adaptation in the remote sensing community.

III. METHODOLOGY
A. Preliminary and Overview

In the standard domain adaptation scenario, the source
domain dataset (Dy = {(x{,y)},) has annotations and
we can access the label-free target domain dataset (D, =
{(x)}/,), in which ng and n, are the number of images
in the source domain dataset and the target domain dataset,
respectively. Here, x{ is an sample in D, and y; denotes
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the corresponding annotation, while x; is an sample in D,
without a label. In real-world applications, the distribution
of the source domain (Py(x*,y*)) and the target domain
(P;(x")) is usually different so that directly adopting the model
trained from D, to test D, may cause severe deterioration.
Furthermore, in partial domain adaptation, the label space of
the target domain is a subspace of the label space of the
source domain (i.e., C; € Cy), which is common to be seen in
practice, as we usually need to transfer a model from a larger
scale dataset to a smaller scale dataset. However, there are
two major challenges in partial domain adaptation scenarios:
1) the source domain may have some outlier classes that are
not appearing in the target domain causing the nonnegligible
negative transfer effect and 2) there is no way for us to identify
the outlier source classes since the target classes are unknown
during the training progress.

Therefore, we propose a new partial domain adaptation
algorithm for remote sensing scene classification to resolve
the domain gaps and the category misalignments brought by
the outlier classes in the source domain. Fig. 3 shows the
framework of our proposed method, including three major
parts, i.e., a PADM, an improved DANN with multiweights,
and an ACER. We summarized the three main parts of our
proposed method as follows.

1) A PADM: We employ a progressive strategy for the
auxiliary domain directly using original source samples
to balance the difference between label distributions
across domains. As a result, the negative transfer effect
caused by outlier classes from the source domain can be
greatly reduced.

2) Improved DANN With Multiweights: We improve the
DANN by adopting the normalized estimation of class-
level weights of the target domain to the classification
loss of source domain and set different weights for hard
and easy samples during the domain adversarial align-
ment according to the results of domain discriminator.

3) ACER: We design an ACER to improve the prediction
confidence for samples that are easy being confused with
other types and avoid those untransferable samples (such
as the samples belonging to outlier classes in the source
domain) to be mistakenly classified because of forceful
entropy minimization.

B. Progressive Auxiliary Domain Module

Adpversarial learning methods have been widely and success-
fully utilized in previous DA studies [24], [25], [26], [57].
They align feature distributions by incorporating a classifier
in the source domain with gradient reversal to confuse a
domain discriminator. For example, the objective of the well-
established DANN [24] can be formulated as

1
CDANN(efﬁy’@d) = Z L, (Gy (Gf(xi))’yi)

s x; €Dy
A
- = Z Li(Ga(Gp(x)),d;i) (1)
x;€D,UD,
where n = ng; + n, and A denotes a hyperparameter that

balances the domain loss (Lg) and the classification loss (L),
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Fig. 3. Flowchart of our proposed method, including three major parts, i.e., a PADM, an improved DANN with multiweights, and an ACER. The PADM
directly uses original source samples to balance the difference between label distributions across domains at the early stage of training phase. The improved

DANN with multiweights adopts the normalized estimated class-level weights of

the target domain to the classification loss of source domain and sets different

weights for “hard” and “easy” samples during the domain adversarial alignment according to the results of domain discriminator. The ACER improves the
prediction confidence for samples that are easy to be confused with other types and avoids those untransferable samples (such as the samples belonging to
outlier classes in the source domain) to be mistakenly classified because of forceful entropy minimization.

which is calculated by the domain discriminator (G,4) and
the classifier of source domain (G,), respectively. For more
explanation, the output of G,4(G ¢(x;)) is the probability of the
feature map in sample i belonging to the source domain. When
G4(Gs(x;)) is larger than 0.5, it denotes that the sample i
belongs to the target domain, and when G4(G /(x;)) is smaller
than 0.5, it represents that the sample i belongs to the source
domain. To maximally confuse the domain discriminator (G ),
d; is equal to 1 for the source domain samples and O for the
target domain samples.

In the partial domain adaptation scenario, the label distri-
butions are not symmetric between the source and the target
domains, thus matching the target classes may be hampered
by the outlier classes from the source domain, leading to an
unavoidable negative transfer problem. In general, a class-
level reweighting method for the source domain seems a
significant scheme for the partial domain adaptation because
we hope to decrease the weights of the outlier classes in
the source domain and increase that for the shared classes.
This method can effectively reduce the negative transfer effect
and promote the positive transfer effect across the source and
the target domains. Previous methods attempt to adopt the
predictions of the target domain from the image classifier
to generate the class-level weight mechanism to suppress
the negative effect of outlier classes [30], [32], which are
considered as a quite effective way. However, this method
heavily depends on high-accuracy “pseudo” target prediction
results to acquire suitable weights. Rare attention has been
paid to augmenting the samples of outlier classes during the
adversarial learning module, pursuing the balance between the
label distributions across the source and the target domains.
To this end, we propose the PADM devoted to create a new
auxiliary domain, borrowing fewer and fewer samples from
the source domain to the auxiliary domain within an iterative
adversarial learning framework. We expect that the augmented
auxiliary domain and the target domain look much more simi-
lar to the source domain with respect to the label distribution,

and the challenging partial problem can be transformed to a
well-studied standard domain adaptation task. Therefore, the
PADM deals with partial domain adaptation by augmenting the
auxiliary domain and transforming it into a standard domain
adaptation-like problem.

In our PADM, we resort to augmenting an auxiliary domain
by using the original samples from the source domain rather
than adopting the previous reweighting mechanisms. Obvi-
ously, our purpose is to balance the different label distributions
between the source and the target domains by increasing the
target domain from original source samples rather than using
a weighting mechanism in the source domain. This is quite
reasonable because we will approximate the partial domain
adaptation issue to a large standard domain adaptation-like
issue so that the negative transfer effects induced by outlier
classes will be effectively alleviated, which means that the
performance of “pseudo” target prediction is not very well.
Especially in remote sensing scene classification, some classes
may have similar texture and spectral characteristics, such as
bare land and dessert, grassland and farmland, and overpass
and intersection. To this end, if we use previous popular
partial domain adaptation methods that heavily depend on
high-accuracy “pseudo” target prediction results to acquire
suitable weights, the adaptation model may cause deterioration
to some extent. Equation (2) is our new objective of adver-
sarial learning, adding an item that represents an auxiliary
domain using the original source domain samples. It should
be emphasized that we set a progressive hyperparameter y
in (2). In our PADM, as the training iteration increases, y
gradually decreases to O as the number of training steps
increases. The reason is that the learned representative features
are not quite transferable in early iterations so that we borrow
more source samples into the target domain for avoiding
class mismatching. Along with the model training, the learned
representative features become more and more discriminative
and transferable. At this time, the estimation of class-level
weights becomes more and more reliable and accurate so
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that the original augmentation of source samples in the target
domain is no more important

1
Caav (05, 04) = — Z Li(Ga(Gr(x)).d;)
n
x; €D;,UD,
4
+= ) La(Ga(Gs(x)),0). ()
R
x; €Dy
To this end, the benefits of our auxiliary domain can be
concluded from two aspects: 1) we can effectively avoid class
mismatching problem since we extend the label space in the
auxiliary domain through using original source domain sam-
ples and 2) by augmenting a large number of source domain
samples, we can effectively reduce the new negative transfer
effect thanks to the less transferable representative features in
early training iterations because of the progressive procedure,
thus preventing further ruining the original distribution of the
target domain.

C. Improved DANN With Multiweights

In this section, we introduce two kinds of reweight mech-
anisms to improve the well-established DANN: an entropy-
aware weight and a target-class-aware weight, which is a
sample-level weight scheme and a class-level weight scheme,
respectively. In original DANN [see (1)], it is unreasonable
that each sample from both source and target domains per-
forms identically in the adversarial domain loss L,. Those
hard-to-transfer samples with uncertain predictions may badly
deteriorate the adversarial learning procedure. Because of
this, we hope that the model can decrease weights for
those hard-to-transfer samples and increase weights for those
easy-to-transfer samples during the domain adversarial align-
ment. Inspired by conditional domain adversarial network
(CDAN) [25], we quantify the prediction uncertainty by the
entropy criterion H (h) = — Zle h.log(h.), where C denotes
the number of classes and £, represents the probability of
predicting a sample to class c. Therefore, we reweight the
domain discriminator by each training sample with an entropy-
aware weight m(x;) = 14-¢ (GG x)) Notably, the entropy-
aware weight is a sample-level weight and the adversarial
objective can be formulated as follows:

Cadv((?f,@d)=% Z m(x;)La(Ga(Gr(x:)),d;)

x; €D,UD,

+ 23" m)La(Ga(G (). 0).  (3)
s x; €D,

On the other hand, besides adopting the PADM mentioned
in Section III-B, we employ a simple reweighting mechanism
that decreases the contribution of the source samples belonging
to the outlier classes. We average the label predictions §
for all samples in the target domain to effectively eliminate
the influence of source classifier mistakes derived from some
target domain samples. To this end, our weight vector can
be calculated as o = ,,L,Z?'ﬂ Vi, where w is a class-level

weight vector with |C,|-dimension. Equations (4) and (5) are
the improved adversarial learning objective and classification
objective, respectively. It is noted that the weight vector w
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only acts on the source domain and the auxiliary domain in
the domain adversarial alignment

Caav (07, 64) = ni Z wym(x;)Lq(Ga(G p(x)), 1)

s x; €D,
1
+— Z m(xi)La(Ga(Gs(x:)),0)
4 x; €D,
+nl > wumx)Li(Ga(Gr(x:),0) (@)
$ x;inDy
1
Cas(05,0y) = - Z oy, Ly (Gy (G s (x1)), yi).- ®)
s x; €D,

D. Attentive Complement Entropy Regularization

Entropy minimization regularization is very popular to
increase the prediction confidence of classifier, which is first
proposed in semisupervised learning [71] and first applied in
domain adaptation domain to refine the adaptive classifier [72].
Inspired by the idea of entropy function in information the-
ory, entropy loss is proposed to reduce the uncertainty of
probabilities for output classes, making the classifier more
accessible to the unlabeled target data. Although transferable
attention domain adaptation (TADA) [26] utilizes the entropy
regularization both on the source and target domain samples,
it may incur some problem for the target samples because
they are unlabeled with the high uncertainty, and it does
not consider the partial domain adaptation scenarios. Clearly,
entropy minimization regularization increases the certainty of
the classifier predictions. On the contrary, not all samples
in the target domain are transferable partial domain adapta-
tion scenarios. For instance, the input samples may probably
belong to the outlier classes. A negative effect could easily
appear because of the forceful minimization for the entropy of
these samples. Due to these dissimilar samples that are easier
to be mistakenly classified, it may cause a negative effect to
directly strengthen their certainty of the classifier predictions
since increasing their confidence will further confuse the
classifier.

Especially in remote sensing scene classification, due to
different sensors and surface environment, the spectral and
texture characteristics for source and target remote sensing
images are quite different. Therefore, the prediction from the
classifier for the target remote sensing images may have low
prediction scores for correct classes. To this end, we adopt the
complement entropy [73] that expects uniform and low pre-
diction scores for incorrect classes for labeled source samples.
To accurately suppress uncertainty and enhance confidence,
we further place more emphasis on the uncertain samples that
own smaller confidence. Different from the original comple-
mentary training strategy in [73], we adopt the adaptive ACER
as a regularized objective (Cacgr) and exploit the class-level
weight (w,,) for each sample like that in improved DANN
(I-DANN) (see Section III-C), which effectively suppresses the
outlier classes in the source domain and makes our entropy
regularization more efficient in partial domain adaptation
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Algorithm 1 Our Proposed Partial Domain Adaptation Algo-
rithm for Remote Sensing Scene Classification

Input: Source domain dataset Dy = {(x{, y/)}i*, and target
domain dataset D, = {(x!)}/_,, where n, and n, are
the numbers of images in the source and target dataset
respectively. C denotes the number of classes in the source
domain. xj is an example in D, and y; is the corresponding
label. x! is an example in D, while it does not access to
the labels. Feature extractor G s, image classifier G, and
domain discriminator G;. N and N, are the total training
iterations and the updating interval iterations, respectively.
y is the progressive ratio for the auxiliary domain and B
is the batch size. w is the class-level weight vector.

Output: Well-trained Gf’;-, G;‘,, G.

1: Initialize the model parameters 0y, 6, and 6.

2: Initialize the class-level weight vector w, w; = 1/C.

3:fori=1:N do

4:  Acquire B samples from Dy and D;, respectively.

5. Random acquire y B samples from D;.

6: Update Gy, G, and G, according to Eq. (8).

7. if i%N, == 0 then

8: Update the class-level weight vector v = % S i

9: Update the progressive ratio for the auxiliary domain
y =y (1 —%).

10: end if

11: end for

12: return G% = G, G; =Gy, G = G,.

scenarios
1
Cacer (07, 0y,04) = TidogC -1
x Y oy Lacer(Gy (G (x)), i) (6)

x; €Dy

where Lcgr is formulated as (7). ¢ is a hyperparameter and
g is the index of ground-truth class in y. C denotes the
total number of classes. We conduct performance comparisons
among different entropy regularization in Section V-C3

C

LACERZ(l—yAg)é Z <1i/A.>log<lij)?.>. (7
J

=Li#e i

E. Minimax Optimization Problem

Therefore, our proposed method contains a PADM, an
I-DANN with multiweights, and an attentive entropy regular-
ization. Overall, our final learning objective includes the classi-
fication objective, adversarial objective, and entropy objective,
which can be formulated as follows:

COverall (ef, ey, 9,1)
= CclS (ef, 0):) — icadv (Hf’ 9(1)
+ aCacer (0, by, 0a)
1
. Z oy, Ly (Gy (G (x)), yi)

x; €Dy
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TABLE I
DETAILED INFORMATION OF THREE PUBLIC REMOTE SENSING DATASETS

Index AID NWPU-RESISC45  UC Merced
Year 2017 2017 2010
Classes 31 45 21
Images per class 220 ~ 420 700 100
Images 10,000 31,500 2,100
Resolution (m) 05~8 0.2 ~ 30 0.3
Size (pixel) 600 x 600 256 x 256 256 x 256
Source Google Earth Google Earth USGS

A
- Z wy,m(xi)La(Ga(Gs(x:)), 1)

S x;e€D,

)
T, > mxi)La(Ga(Gf(xi)),0)

! x; €D,

— /:l_): XiEZDV cuy,.m(xi)Ld (Gd (Gf (X,‘)) , O)
a

~ nlog(C — 1) > oy Lacer (Gy (G (). 1) (8)

x; €Dy

where Cis, Cagy, and Cep represent the learning objective of
the classification for the source domain, the domain adversarial
alignment, and the entropy loss, respectively, and A and a
represent the hyperparameters that tradeoff the adversarial
alignment objective and attentive entropy objective with the
classification objective in the unified optimization problem,
respectively. y is a gradually decreasing ratio. The minimax
optimization problem aims at finding the network parameters
O¢, 0y, and 6, that jointly satisfy

(@ Y éy) = arg gnél Coveran (0, 0y)

(éd) = arg HbaX Coveran (0)- ®)
a

IV. DATASETS

We collect a remote sensing dataset to validate the perfor-
mance of our proposed method. The dataset is based on three
different open-source remote sensing datasets, i.e. AID [7],
NWPU-RESISC45 [8], and UC Merced [70]. Table I lists
the detailed information of these three public remote sensing
datasets. They are derived from different platforms and regions
with different resolutions and acquisition dates, which are
suitable for validating domain adaptation approaches [62],
[66], [74], [75], [76]. We first review the three publicly avail-
able remote sensing datasets and then introduce the collected
dataset and the partial domain adaptation scenarios.

1) AID [7] is made up of 30 aerial scene types collected
from Google Earth imagery. All the sample images per
class in AID are chosen from different countries and
regions at different times and seasons under different
imaging conditions. There are 10000 images in the AID
dataset, with 220-420 images of size 600 x 600.

2) NWPU-RESISC45 [8] consists of 31 500 images divided
into 45 scene classes with spatial resolution ranging
from 30 to 0.2 m per pixel. Each class has 700 images of
size 256 x 256 pixels. The scale of NWPU-RESISC45 is
larger than UC Merced and AID, along with rich image
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TABLE II

LABEL INFORMATION FOR SIX TRANSFER TASKS. THE CLASS NAMES IN THE PARENTHESES DENOTE THE CLASS NAMES FOR THE TARGET DOMAIN.
NOTABLY, ALL CLASSES IN UC MERCED ARE INCLUDED IN NWPU-RESISC45 AND IT IS THE STANDARD DOMAIN ADAPTATION SCENARIO.
OTHER FIVE TRANSFER TASKS ARE THE PARTIAL DOMAIN ADAPTATION SCENARIOS

Source Domain

Target Domain Shared Classes

Outlier Classes

Airport, Baseball field, Beach, Bridge, Church, Forest,
Commercial, Dense residential, Medium residential, Desert,
Farmland (Circular farmland & Rectangular farmland),

Bare land, Center, School,

AID NWPU-RESISC45 Playground (Ground track field), Port (Harbor), Industrial, Park, Pond, Resort, Square
Sparse residential, Storage tank, viaduct (Overpass), Meadow,
Mountain, River, Raiway station, Stadium, Parking
Baseball field, Beach, Commercial (Buildings), Airport, Bare land, Bridge, Square, Stadium,
AID UC Merced Forest, Medium residential, Parking, Port (Harbor), Center, Church, Desert, School, Mountain,
Sparse residential, Storage tanks, Viaduct (Overpass), Desert, Industrial, Meadow, Raiway station,
Dense residential, Farmland (Agricultural), River Park, Playground, Pond, Resort
Airport, Baseball diamond, Beach, Church, Commercial area,
Circular farmland & Rectangular farmland (Farmland), Basketball court, Chaparral, Cloud, Thermal power station
NWPU-RESISC45 AID Harbor (Po'rt), Rail\yay station, River, Spa?se residential, i Freeway, Golf course, Intersection, Island, Teljrace
Dense residential, Parking lot, Ground track field (Playground), Airplane, Lake, Mobile home park, Palace, Tennis court
Forest, Industrial area, Meadow, Medium residential, Mountain, Roundabout, Runway, Sea ice, Ship, Snowberg, Wetland
Stadium, Storage tank, Overpass (Viaduct), Desert, Bridge
Airplane, Baseball diamond, Beach, Chaparral, Commercial area, Airport, Basketball court, Bridge, Church, Island, Lake,
Dense residential, Forest, Freeway, Golf course, Harbor, Intersection, Cloud, Desert, Ground track field, Industrial area,
NWPU-RESISC45 UC Merced Circular farmland & Rectangular farmland (Farmland), Meadow, Mountain, Palace, Railway, Railway station,
Mobile home park, Parking lot, River, Runway, Sparse residential, Sea ice, Ship, Snowberg, Stadium, Terrace,
Storage tank, Tennis court, Medium residential, Overpass Wetland, Roundabout, Thermal power station
Agricultural (Farmland), Baseball diamond, Buildings (Commercial), Airplane, Chaparral, Golf course,
UC Merced AID Dense residential, Forest, Harbor (Port), Medium residential, Beach, Mobile home park, Tennis court,
Overpass (Viaduct), Parking lot, River, Sparse residential, Storage tanks Intersection, Runway, Freeway
Airplane, Baseball diamond, Beach, Buildings (Commercial area),
Agricultural (Circular farmland & Rectangle farmland), Forest
UC Merced NWPU-RESISC45 Freeway, Golf course, Harbor, Intersection, Medium residential, None

Mobile home park, Overpass, Parking lot, River, Runway,
Tennis court, Storage tanks, Sparse residential, Chaparral

variations, high within-class diversity and between-class
similarity.

3) UC Merced [70] comprises 21 land use classes selected
from aerial orthoimagery with a pixel resolution of 1 ft.
UC Merced is the first publicly available remote sensing
evaluation dataset and has been widely used to develop
and evaluate remote sensing image classification. The
images, downloaded from the United States Geological
Survey (USGS), are cropped from large aerial images.

According to the classes in AID, NWPU-RESISC45, and
UC Merced, we collect six transfer tasks and the label informa-
tion can be shown in Table II. Note that the class names in the
parentheses denote the class names for the target domain. For
example, in the transfer task of AID — NWPU-RESISC45,
the farmland in the AID corresponds to the circular farmland
and the rectangular farmland in the NWPU-RESISC45; the
playground in the AID corresponds to the ground track field in
the NWPU-RESISC45. Tt is easy to understand that the more
the outlier classes are, the harder the transfer task is. Fig. 4
shows some example classes of these six transfer tasks. All
of these transfer tasks are partial domain adaptation scenarios
except UC Merced — NWPU-RESISC45. Since all the classes
in the UC Merced are included in the NWPU-RESISC45, the
transfer task of UC Merced — NWPU-RESISC45 is actually
a standard domain adaptation scenario. We still retain this
standard domain adaptation scenario because we can proof
that our proposed method not only improves in the partial
domain adaptation scenarios but also performs better in the
standard domain adaptation scenarios.

Different from standard domain adaptation dataset such
as Office-31 [77] and Office-Home [78] that set common
classes and outlier classes according to the alphabetic order,

we evaluate our partial domain adaptation methods cross
different remote sensing datasets rather than only one dataset.
Each dataset has its own collecting purpose and setting of
corresponding classes. Any two datasets may include different
types of classes for land cover and land use (see Tables I
and II). To this end, it is difficult to unify the categories among
different remote sensing datasets. In this article, we select three
public remote sensing datasets, which is listed in Table I.
For example, in AID — NWPU-RESISC45, the number of
shared classes is 23 and the number of private classes in the
source domain is 7 (see Table II). Noticeably, we remove
private classes in the target domain in partial domain adap-
tation scenarios. Compared to the standard domain adaptation
dataset such as Office-31 [77] and Office-Home [78], this
kind of setting is more practical in real-world applications
that we cannot know the exact number of classes in advance.
Furthermore, it can evaluate the effectiveness of our method
under varying numbers of outlier classes in the source domain,
while the standard domain adaptation dataset usually evaluates
the performance under fixed outlier classes [30], [34].

V. EXPERIMENTAL RESULTS
A. Experimental Setup

In our experiments, we use all labeled source domain sam-
ples and all unlabeled target domain samples and compare the
average classification accuracy. We set tradeoff hyperparame-
ters A, a, and the original y as 1.0, 0.1, and 0.25, respectively.
We implement our method based on PyTorch [84] and conduct
them on GeForce 2080 Ti. The backbone architectures in
our experiments are ResNet-50 [79] pretrained on ImageNet
dataset [85]. The learning rate is 0.001 with the same annealing
strategy as [24], and we adopt mini-batch SGD [86] with
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AID > NWPU-RESISC45

\ Commercial

Chaparral

Fig. 4. Example classes of six partial domain adaptation scenarios, includ-
ing AID — NWPU-RESISC45, AID — UC Merced, NWPU-RESISC45 —
AID, NWPU-RESISC45 — UC Merced, UC Merced — AID, and UC
Merced — NWPU-RESISC45. Notably, all classes in UC Merced are
included in NWPU-RESISC45 and it is the standard domain adaptation
scenario. Other five transfer tasks are the partial domain adaptation scenarios.

a momentum of 0.9 as our optimizer, following the batch
size of 36. Our method is validated by our collected datasets
described in Section I'V. We evaluate the accuracy for six types
of transfer tasks for partial domain adaptation scenarios and
their average accuracy. The six transfer tasks are A — N, A
— U N—- A N—- U, U— A, and U — N, where A,
N, and U denote AID, NWPU-RESISC45, and UC Merced,
respectively.

B. Comparisons Between Our Proposed Method and Other
State-of-the-Art Domain Adaptation Methods

We compare our proposed method with other five state-
of-the-art partial domain adaptation approaches, including
PADA [32], SAN [30], ETN [33], CPADA [69], BA*US [34],
DRCN [35], AR [82], and CAL [83]. PADA [32] adds the
average predictions of the target domain simultaneously to
the source classifier and the domain discriminator. SAN [30]
employs a multidiscriminator weighted by the percentages of
predicted results to the target domain. ETN [33] adopts an
entropy minimization principle to reweight the source classifier

5601317

and the domain discriminator. CPADA [69] transfers relevant
examples in the shared classes and ignores irrelevant ones
in the specific classes with the aid of the coordinate loss.
BA3US [34] emphasizes uncertain samples and exploits and
adaptive weighted complement entropy objective to encour-
age incorrect classes to have uniform and low prediction
scores. DRCN [35] plugs one residual block into the source
network along with the task-specific feature layer, enhancing
the adaptation from source to target, and explicitly weakens
the impacts from the outlier classes. AR [82] proposes a
training algorithm that alternately updates the parameters of
the network and optimizes the weights of source domain
data. CAL [83] designs a contrastive learning-aided alignment
method for partial domain adaptation scenarios to reweight
source samples to reduce the contribution of outlier samples.
At the same time, we also compare our proposed method with
other seven standard domain adaptation approaches to indi-
cate the severe negative transfer effect. These seven standard
domain adaptation approaches include deep domain confusion
(DDC) [19], DANN [24], Deep Coral [21], CDAN [25],
TADA [26], transferable ResNet (TransResNet) [80], and
category contrast technique (Caco) [81]. DDC introduces an
adaptation layer and an additional domain confusion loss
through maximum mean discrepancy (MMD). DANN adopts a
gradient reversal layer to facilitate adaptation so that the model
does not perform well in discriminating between the source
domain and the target domain, which has been demonstrated
in Section III. Deep Coral learns a transfer network through
a linear transformation to align the second-order statistics of
the source and target distributions. CDAN is designed with
two conditioning strategies, i.e., multilinear conditioning and
entropy conditioning. TADA focuses the adaptation model
on more transferable regions and images. TransResNet [80]
remedies the residual block in the ResNet [79], separat-
ing source and target input features and highlighting more
transferable channels in each block. Caco [81] constructs a
semantics-aware dictionary with samples from both source
and target domains where each target sample is assigned
a (pseudo) category label based on the category priors of
source samples. We also list the straightforward CNN model
that leverages only classification loss without any domain
adaptation approaches in Table III. In this article, we conduct
our experiments on popular architectures, ResNet-50 [79],
which contains the residual block so that empirically eases
the problem of gradient vanishing and explosion. The ResNet
family has been considered as the most versatile backbone
across a wide array of deep learning applications.

Table III lists the accuracy of our collected dataset for
six partial domain adaptation scenarios under the backbone
of ResNet-50. Among standard domain adaptation meth-
ods, we can observe that only DANN [24] and Deep
Coral [21] perform better than the straightforward CNN
model (i.e., ResNet-50), with only 0.13% and 1.05% improve-
ment, respectively. Other standard domain adaptation meth-
ods achieve worse performance than the naive ResNet-50
model, indicating that there exists severe negative transfer
effect for partial domain adaptation scenarios (see details
in VI-A). As for partial domain adaptation approaches, our
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TABLE III
ACCURACY (%) ON OUR COLLECTED DATASET FOR PARTIAL DOMAIN ADAPTATION SCENARIOS (RESNET-50)
Method A—-N A-U N-A N-U U—-A U-—>N Avg
ResNet-50 [79] 72.32 51.38 80.43 73.67 57.74 60.21 65.96
DDC [19] 74.37 46.92 77.12 63.76 64.42 65.14 65.29
DANN [24] 75.68 50.46 77.04 63.00 65.58 64.76 66.09
Deep Coral [21] 73.43 54.46 81.33 73.00 57.91 61.93 67.01
Standard domain adaptation CDAN [25] 74.62 46.62 76.46 62.71 64.66 64.81 64.98
TADA [26] 74.34 49.08 75.88 63.71 63.52 65.47 65.33
TransResNet [80] 75.38 51.15 81.11 73.29 64.64 63.93 68.25
Caco [81] 73.45 56.46 82.75 72.81 55.67 62.26 67.23
PADA [32] 72.02 51.85 83.14 74.14 61.08 59.23 66.91
SAN [30] 79.55 58.08 85.93 76.43 76.46 68.81 74.21
ETN [33] 78.67 52.08 84.90 74.76 71.45 68.50 71.73
CPADA [69] 72.92 59.58 85.49 73.88 73.47 67.01 72.06
Partial domain adaptation BA3US [34] 83.98 58.77 89.21 75.86 73.74 73.70 75.88
DRCN [35] 79.18 64.15 85.81 80.67 63.89 66.71 73.40
AR [82] 84.67 63.23 86.10 79.95 77.11 71.80 77.14
CAL [83] 84.17 63.62 85.66 80.82 76.31 74.19 77.46
Ours 84.61 64.62 89.54 80.76 79.71 76.92 79.36
TABLE 1V
ACCURACY (%) OF ABLATION STUDIES ON OUR COLLECTED DATASET FOR OUR PROPOSED METHOD (RESNET-50)
PADM I-DANN WCER A—->N A—-U N->A N-U U—-A U-—>N Avg
X X X 75.68 50.46 77.04 63.00 65.58 64.76 66.09
v X X 79.55 62.77 80.94 72.90 73.12 72.42 73.62
X v X 80.51 55.15 87.05 77.62 67.54 69.90 72.96
X X v 74.80 60.18 83.50 72.20 70.22 66.96 71.31
N v X 81.28 62.54 87.85 81.14 76.75 73.67 77.21
v X v 82.17 62.42 86.90 78.55 71.77 74.77 77.10
X v v 82.98 57.73 86.71 74.79 73.73 75.40 74.92
v v v 84.61 64.62 89.54 80.76 79.71 76.92 79.36
TABLE V
COMPARISON BETWEEN ¢~ 7 AND 1 + ¢~ # (") 1N “m” OF THE SAMPLE-LEVEL WEIGHT IN (3)
Method A—-N A-U N—-A N-U U—-A U—>N Avg
e H) 81.45 62.00 88.51 79.95 76.31 74.85  77.18
1+e M) (Ours)  84.61 64.62 89.54 80.76 79.71 7692  79.36

proposed method achieves the highest average accuracy of
79.36%, with 1.90%—12.45% improvement compared to other
state-of-the-art partial domain adaptation methods, which
shows superior classification accuracy on each transfer tasks.
Also, our proposed method attains 13.67% gains compared to
the straightforward CNN model.

C. Ablation Studies

Table IV shows the accuracy of ablation studies on our col-
lected dataset for our proposed method under the backbone of
ResNet-50. Notably, PADM, I-DANN, and ACER represents
the strategies of PADM, improved DANN with multiweights,
and ACER , respectively. The Baseline method (the first line
in Table IV) here is the naive DANN [24], which is described
in (1).

1) Effectiveness of the PADM: Unlike previous partial
domain adaptation methods [30], [32], we resort to aug-
ment an auxiliary domain by using the original samples
from the source domain instead of employing the previous
reweighting scheme. Our PADM attains 7.53% improvement
compared to DANN. It is desirable that PADM promotes
the classification accuracy substantially on harder transfer
tasks, such as A — U (+12.31%) and N — U (+9.90%),
which have more outlier classes. Furthermore, the PADM
achieves +4.25%, +3.48%, and +2.15%, respectively, based

on I-DANN, DANN + ACER, and I-DANN + ACER with
respect to the average accuracy, indicating the superiority and
effectiveness of the PADM.

2) Effectiveness of the I-DANN: According to the original
DANN, our I-DANN contains two kinds of reweight mech-
anisms to improve the performance in the partial domain
adaptation scenarios: an entropy-aware weight and a target-
class-aware weight, which is a sample-level weight scheme
and a class-level weight scheme, respectively. As shown
in Table IV, our I-DANN performs +6.88% better than
the original DANN, especially attaining significant improve-
ment on more challenging transfer tasks, such as N — U
(+14.62%) and N — A (+10.01%). In addition, the - DANN
achieves +3.59%, +3.61%, and +2.26% improvements,
respectively, on the basis of DANN + PADM, DANN -+
ACER, and DANN + ACER + PADM with respect to the
average accuracy.

In addition, we further compare the performance between
e ™ and 1+ ¢ H® in “m” of the sample-level weight in
(3), which is listed in Table V. We can find that 1 4+ ¢~ 7®
can be more stable than ¢ 7™ for our model, as well as
avoiding the value of exponential form is too small. Further-
more, we also conduct the performance comparisons among
different weight mechanisms in I-DANN. As can be seen in
Table VI, simultaneously adopting these two kinds of weights
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Accuracy (%) of our method for our collected dataset in the partial domain adaptation scenarios under different hyperparameters of (Left) A and

TABLE VI
PERFORMANCE COMPARISONS AMONG DIFFERENT WEIGHT MECHANISMS IN [-DANN
Method A—-N A-U N-A N->U U—-A U->N Avg
Only sample-level weight 81.57 62.92 88.71 78.86 76.51 73.43 77.00
Only class-level weight 83.73 60.23 87.73 79.19 78.05 73.19 77.03
Both sample-level and class-level weight (I-DANN) (Ours) 84.61 64.62 89.54 80.76 79.71 76.92 79.36

(i.e., sample- and class-level weight mechanisms) achieves the
best accuracy, with over 2.30% better than only one weight
mechanism.

3) Effectiveness of the ACER: Our ACER is proposed
not only to reduce the uncertainty of probabilities for output
classes, making the classifier more accessible to the unlabeled
target data, but also to alleviate the forceful minimization of
the entropy of nontransferable samples (such as the samples
belonging to outlier classes in the source domain). We can
observe from Table IV that although the performance drops
on the task of A — N (—0.89%), our ACER improves the
average accuracy of +5.22%. Furthermore, the ACER attains
+3.48%, 4+1.96%, and +2.15% gains, respectively, on the
basis of DANN + PADM, [-DANN, and I-DANN + PADM
with the respect of the average accuracy.

Furthermore, we compare different entropy regularizations
on our collected dataset for partial domain adaptation scenarios
in Table VII. We can observe that ACER achieves higher
accuracy than other entropy regularization, including attentive
entropy regularization in TADA [26], original complement
entropy regularization [73], confidence-weighted complement
entropy in BA3US [34], and guided complement entropy [87],
with 0.66%-2.15% improvement. To this end, we adopt ACER
as our entropy regularization in our partial domain adaptation
method.

4) Sensitive Analysis: Here, we conduct ablation studies for
two hyperparameters, i.e., 4 and a. Fig. 5 shows the results
of our proposed method for our collected dataset in the partial
domain adaptation scenarios under two hyperparameters of 4
(see the left in Fig. 5) and a (see the right in Fig. 5) for
ResNet-50. When a = 0.1, we evaluate different values of A
ranging from 0.5 to 5.0 (on the left in Fig. 5). It is evident
that when 4 > 1.0, the accuracy drops dramatically. Also, the
performance of 4 = 1.0 is slightly better than A = 0.5. When

A = 1.0, we evaluate different values of o ranging from 0.01 to
2.0 (on the right in Fig. 5). We observe that o = 0.1 performs
better than others with an obvious improvement. In conclusion,
we set the hyperparameters A and o as 1.0 and 0.1 in all our
experiments, respectively.

VI. DISCUSSION

A. Comparisons Among ResNet-50, Standard Domain
Adaptation Methods, and Partial Domain Adaptation
Methods

In this section, we compare the straightforward CNN model
(ResNet-50), standard domain adaptation methods, and partial
domain adaptation methods in respect of their accuracy. In par-
ticular, we point out the accuracy degradation for standard
domain adaptation methods. We calculate the accuracy gap
between the aforementioned domain adaptation methods and
the straightforward CNN model (ResNet-50), which only uses
the source dataset without any domain adaptation algorithm.
In practice, the accuracy gap can be calculated as

Accuracy Gap = ACCpp — ACCRresNet-50 (10)
where ACCpp and ACCgresnet-50 are the accuracy of approaches
that using domain adaptation and the straightforward CNN
method (ResNet-50), respectively. If Accuracy Gap > 0,
it means that the domain adaptation method performs a
positive effect in the partial domain adaptation scenarios.
Conversely, Accuracy Gap < O denotes that the domain
adaptation method brings about an accuracy degradation in
the partial domain adaptation scenario without any improve-
ment. Table VIII lists the performance of Accuracy Gap
for all domain adaptation methods above, including standard
domain adaptation approaches and partial domain adaptation
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TABLE VII

PERFORMANCE COMPARISONS AMONG DIFFERENT ENTROPY REGULARIZATIONS ON OUR COLLECTED DATASET
FOR PARTIAL DOMAIN ADAPTATION SCENARIOS (RESNET-50)

Method A—-N A-U N->A N->U U—-A U->N Avg
Attentive entropy regularization in TADA [26] 84.27 62.38 89.64 81.71 77.21 75.69 78.48
Complement entropy regularization [73] 84.17 63.62 88.51 81.52 78.09 76.28 78.70
Confidence-weighted complement entropy in BA3US [34] 84.05 62.00 86.81 76.81 78.76 74.82 77.21
Guided complement entropy [87] 85.38 63.92 89.72 77.19 78.80 75.13 78.36
Attentive complement entropy regularization (ACER) (Ours) 84.61 64.62 89.54 80.76 79.71 76.92 79.36
TABLE VIII
ACCURACY GAP (%) ON OUR COLLECTED DATASET FOR PARTIAL DOMAIN ADAPTATION SCENARIOS (RESNET-50).
THE RED NUMBERS DENOTE THE ACCURACY GAP < 0

Method A—-N A—-U N—-A N-U U—-A U-—=N Avg

DDC [19] 2.05 -4.46 -3.31 -9.91 6.68 4.93 -0.67

DANN [24] 3.36 -0.92 -3.39 -10.67 7.84 4.55 0.13

Deep Coral [21] 1.11 3.08 0.90 -0.67 0.17 1.72 1.05

Standard domain adaptation CDAN [25] 2.30 -4.76 -3.97 -10.96 6.92 4.60 -0.98

TADA [26] 2.02 -2.30 -4.55 -9.96 5.78 5.26 -0.63

TransResNet [80] 3.06 -0.23 0.68 -0.38 6.90 3.72 2.29

Caco [81] 1.13 5.08 2.32 -0.86 -2.07 2.05 1.27

PADA [32] -0.30 0.47 2.71 0.47 3.34 -0.98 0.95

SAN [30] 7.23 6.70 5.50 6.76 18.72 8.6 8.92

ETN [33] 6.35 0.70 4.47 1.09 13.71 8.29 5.77

CPADA [69] 0.60 8.20 5.06 0.21 15.73 6.80 6.10

Partial domain adaptation BA3US [34] 11.66 7.39 8.78 2.19 16.00 13.49 9.92

DRCN [35] 6.86 12.77 5.38 7.00 6.15 6.50 7.44

AR [82] 12.35 11.85 5.67 6.28 19.37 11.59 11.18

CAL [83] 11.85 12.24 5.23 7.15 18.57 13.98 11.50

Ours 12.29 13.24 9.11 7.09 21.97 16.71 13.67

approaches. Unfortunately, although employing domain adap-
tation algorithms, most standard domain adaptation methods
have serious accuracy deficiency in more difficult partial
domain adaptation scenarios, such as A — U, N — A, and N
— U. For example, in the task of N — U, all standard domain
adaptation methods encounter serious accuracy degradation
ranging from —0.38% to —10.96%. In the task of A — U, all
standard domain adaptation approaches incur the performance
degradation except Deep Coral [21] and Caco [81], with
—0.23 to —4.76. For other transfer tasks, Accuracy Gap > 0
since the advantages of domain adaptation strategies win the
effect of outlier classes from the source domain in the partial
domain adaptation scenarios. To this end, directly adopting
standard domain adaptation approaches (consider that the label
space of the source domain is identical to that of the target
domain) will lead to relatively severe deficiency in the partial
domain adaptation scenarios. Although PADA [32] adopts par-
tial domain adaptation strategies, it still causes slight accuracy
degradation, with —0.30% in A — N and —0.98% in U —
N, which indicates that directly employing partial domain
adaptation algorithms in computer vision domain may not
satisfy in the remote sensing community On the other hand,
it is convinced that our proposed method greatly improves
the transferability in partial domain adaptation scenarios,
with +13.67% improvement compared to the straightforward
ResNet-50 model. The results also prove the necessity for our
strategies of our proposed method to alleviate the accuracy
degradation in partial domain adaptation scenarios.

B. Accuracy for Varying Numbers of Outlier Classes

In this section, we investigate a wider spectrum of par-
tial domain adaptation by varying the number of outlier

classes. Fig. 6 shows that when the number of outlier classes
increases, the performance of the straightforward CNN model
(ResNet-50) and the standard domain adaptation method
(CDAN) degrades quickly, meaning that negative transfer
becomes severer when the domain gap is enlarged. The per-
formance of state-of-the-art partial domain adaptation methods
(such as PADA and SAN) still has a certain measure of degra-
dation. From Fig. 6, our proposed method always achieves
the highest accuracy and lowest performance degradation as
the number of outlier classes increases, indicating that our
proposed method can effectively alleviate the negative transfer
effect in partial domain scenarios. To this end, the margins that
our proposed method outperforms other domain adaptation
methods become larger and larger when the number of outlier
classes increases.

C. Features and Weights Visualization

To display the feature transferability, we visualize the net-
work representations of the last convolutional layer from three
transfer tasks in Fig. 7 (from top to bottom: A — U, N —
U, and U — A) learned by Baseline (ResNet-50), DANN,
Deep Coral, SAN, and Ours (from left to right) using t-SNE
visualization [89], [90]. From left (ResNet-50) to right (Ours),
the target domains are made more and more indistinguishable.
For example, the representations generated by our proposed
method formed exactly 13 clusters with clearer boundaries in
the transfer task of U — A. The better visualization results of
our method indicate that our strategies are able to learn more
transferable features and eliminate the negative transfer effect
for the partial domain adaptation.

In addition, we illustrate the estimation of class-level
weights (w in (8)) for two transfer tasks (top line: A — N
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Fig. 6. Accuracy with varying number of outlier classes [(Left) A — N and (Right) N — A]. Our proposed method always achieves the highest accuracy
and the lowest performance degradation as the number of outlier classes increasing, indicating that our proposed method can effectively alleviate the negative
transfer effect in partial domain scenarios. To this end, the margins that our proposed method outperforms other domain adaptation methods become larger

and larger when the number of outlier classes increases.

Baseline (ResNet-50) DANN Deep Coral
A>U
N->U
U>A

Fig. 7.

t-SNE visualization of features for three transfer tasks (from top to bottom: A — U, N — U, and U — A) learned by Baseline (ResNet-50), DANN,

Deep Coral, SAN, and Ours (from left to right). From left to right, the target domains are made more and more indistinguishable.

and bottom line: N — A) in Fig. 8. Fig. 8 shows the class-
level weights at the iteration of 0, 400, 800, 1200, 1600,
and 2000 (from left to right). The x-axis denotes the value
of weights and the y-axis represents the class index. In the
task of A — N, class indexes from O to 23 are shared classes
and others are outlier classes in the source domain. We can
observe that as the iteration number increases, the weights of
shared classes become higher, while the weights of outlier
classes become lower. In the task of N — A, the outlier
classes’ indexes are 24-44, which is a more challenging
partial domain adaptation task. It is also evident that the
weight estimation sounds accurate, resulting in high-accuracy
classification performance.

D. Effectiveness of Our Proposed Method on Standard
Partial Domain Adaptation Datasets

We also evaluate our proposed method on standard par-
tial domain adaptation datasets, such as Office-31 [77] and

DomainNet [88] in Tables IX and X. Office-31 contains three
domains with 31 categories: Amazon (A), DSLR (D), and
Webcam (W). Following the same data protocol as previous
partial domain adaptation publications [32]. DomainNet [88] is
a large-scale challenging domain adaptation dataset. We pick
four domains [Clipart (C), Painting (P), Real (R), and Sketch
(S)] with 126 classes. We use the first 40 categories to build
the target domain according to the alphabetical order [82],
[91]. As listed in Tables IX and X, our proposed method
achieves the highest average accuracy in both traditional
domain adaptation datasets, meaning that our proposed method
is more effective and robust than other state-of-the-art partial
domain adaptation methods.

E. Potential Practical Application Scenarios in Remote
Sensing Community Based on Our Proposed Method

Partial domain adaptation problem is a more practical and
challenging transfer task. Despite that the issue of domain
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Fig. 8.

Tlustration of class-level weights (e in (8)) for two transfer tasks (top line: A — N and bottom line: N — A). We display the class-level weights

at the iteration of 0, 400, 800, 1200, 1600, and 2000 (from left to right). The x-axis denotes the value of weights and the y-axis represents the class index.
We can observe that as the iteration increasing, the weights of shared classes become higher, while the weights of outlier classes become lower.

TABLE IX
ACCURACY (%) ON OFFICE-31 [77] FOR PARTIAL DOMAIN ADAPTATION SCENARIOS (RESNET-50)

Method A—-D A-W D—-A D-W WA WD Avg

ResNet-50 [79] 83.44 75.59 83.92 96.27 84.97 98.09 87.05

Standard domain adaptation DANN [24] 81.53 73.56 82.78 96.27 86.12 98.73 86.50

P CDAN [25] 77.07 80.51 93.58 98.98 91.65 98.09 89.98

PADA [32] 82.17 86.54 92.69 99.32 95.41 100.00 92.69

Partial domain adaptation SAN [30] 94.27 93.90 94.15 99.32 88.73 99.36 94.96

P ETN [33] 95.03 94.52 96.21 100.00 94.64 100.00 96.73

Ours 99.25 98.87 94.71 100.00 94.88 98.51 97.70

TABLE X
ACCURACY (%) ON DOMAINNET [88] FOR PARTIAL DOMAIN ADAPTATION SCENARIOS (RESNET-50)

Method cC-p C-R C-S P-C P-R P->S R-C R-P R-S S§S—-C S—-P S->R Avg
ResNet-50 [79] 41.21 60.01 42.13 54.52 70.80 48.32 63.10 58.63 50.26 4543 39.30 49.75 51.96
Standard domain  DANN [24] 27.83 36.64 2991 31.79 41.98 36.58 47.64 46.81 40.85 25.82 29.54 32.72 35.68
adaptation CDAN [25] 37.46 48.26 46.61 45.50 60.96 52.63 62.01 60.63 54.74 35.37 38.50 43.63 48.86
Partial PADA [32] 22.49 32.85 29.95 25.71 56.47 30.45 65.28 63.35 54.17 17.45 23.89 2691 3741
domain SAN [30] 34.35 51.62 46.23 57.13 70.21 58.25 69.61 67.49 67.88 41.69 45.15 48.44 54.50
adaptation ETN [33] 44.99 57.90 53.66 59.11 70.97 63.35 69.39 63.59 62.40 44.48 48.80 48.29 57.08
P Ours 42.87 54.72 53.79 65.03 76.39 64.69 79.99 74.31 75.02 50.36 42.69 49.65 60.63

adaptation has been discussed and developed in remote sens-
ing image classification during recent years, seldom studies
conducted experiments to tackle the problem in domain shift
scenario that the label space of the source domain subsumes
that of the target domain. However, in the remote sensing
community, we often meet the scenario where we want to
transfer from a larger scale dataset to a smaller scale dataset.
If we directly adopt standard domain adaptation methods, the
outlier classes (which do not exist in the target domain) may
seriously deteriorate the transferability and generate a negative
transfer effect since the target label distribution disjoint with
the source label distribution. For example, in land cover and
land use mapping, the samples of some classes (such as
snow/ice and tundra) from the source domain may not be
included in the target domain (such as the tropical areas),
which may inevitably cause a negative transfer effect. On the
other hand, if we want to conduct a forest inventory (tree
species classification) for a new study area with unknown
tree species, a reasonable way is that we utilize the rich
tree species data bank collected from other regions and adopt

partial domain adaptation algorithms to map the tree species
for the new study area.

Furthermore, it is hard to be informed of the exact label
space of the target domain and relatively labor-exhausting
and time-consuming to collect samples for the target domain.
Therefore, our proposed method is a step into the empty slots
in the partial domain adaptation for remote sensing image
classification. Compared to other standard domain adaptation
methods, our method can effectively address the negative
transfer effect generated by the outlier classes from the source
domain. Compared to other state-of-the-art partial domain
adaptation methods, our method also keeps high improvement
in standard domain adaptation scenarios, indicating that our
proposed method is a more robust and practical method in
real-world scenarios and applications.

VII. CONCLUSION

In this context, we propose a new partial domain adapta-
tion algorithm for remote sensing scene classification, which
tackles the problem that the label space of the source domain
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subsumes that of the target domain. Our proposed method
constitutes three main parts. First, we employ a PADM
directly using original source samples to balance the difference
between the label distributions across domains. To this end,
the negative transfer effect caused by outlier classes from
the source domain can be greatly alleviated. Second, we not
only adopt the normalized estimated class-level weights of
the target domain to the classification loss but also set dif-
ferent weights for hard and easy samples during the domain
adversarial alignment according to the results of domain
discriminator. Finally, we design an ACER to improve
the prediction confidence for samples that are easy to be
confused with other types and avoid those untransferable
samples (such as the samples belonging to the outlier classes
in the source domain) to be mistakenly classified because
of forceful entropy minimization. To perform an evaluation
of our proposed method, we integrate a test dataset that
includes three common remote sensing datasets (i.e., AID,
NWPU-RESISC45, and UC Merced). Our method achieves an
average accuracy of 79.36%, considerably outperforming other
state-of-the-art partial domain adaptation methods with an
average accuracy improvement of 1.90-12.45% and attaining a
13.67% gain compared to the straightforward CNN model (i.e.,
ResNet-50). The experiment results indicate that our approach
shows promising potential for solving a more general and prac-
tical problem with fewer annotations and human resources.
In the future, we will strive to explore the effectiveness of our
proposed method to practical partial domain adaptation sce-
narios and applications using multiregional, multisensor, and
multitemporal remote sensing images with limited annotations,
e.g., land cover and land use mapping, and crop monitoring.
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