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Abstract—In high-resolution remote sensing images (RSIs),
complex composite object detection (e.g., coal-fired power plant
detection and harbor detection) is challenging due to multiple
discrete parts with variable layouts leading to complex weak
inter-relationship and blurred boundaries, instead of a clearly
defined single object. To address this issue, this article proposes
an end-to-end framework, i.e., relational part-aware network
(REPAN), to explore the semantic correlation and extract dis-
criminative features among multiple parts. Specifically, we first
design a part region proposal network (P-RPN) to locate discrim-
inative yet subtle regions. With butterfly units (BFUs) embedded,
feature-scale confusion problems stemming from aliasing effects
can be largely alleviated. Second, a feature relation Transformer
(FRT) plumbs the depths of the spatial relationships by part-
and-global joint learning, exploring correlations between various
parts to enhance significant part representation. Finally, a
contextual detector (CD) classifies and detects parts and the
whole composite object through multirelation-aware features,
where part information guides to locate the whole object. We
collect three remote sensing object detection datasets with four
categories to evaluate our method. Consistently surpassing the
performance of state-of-the-art methods, the results of extensive
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experiments underscore the effectiveness and superiority of our
proposed method.

Index Terms—Complex composite object detection, high-
resolution remote sensing images (RSIs), inter-relationship,
Transformer.

I. INTRODUCTION

BJECT detection in remote sensing areas, one of
Othe most interesting yet formidable issues, laying
the groundwork for interpreting and understanding remote
sensing images (RSIs) [1]. Owing to the achievements in
high-resolution RSIs datasets and deep learning algorithms,
tremendous progress in the accuracy and efficiency of object
detection in remote sensing has been witnessed [1], [2], [3],
[4], [5], [6], [7], [8]. However, most of the existing algorithms
are designed for clearly defined single-object detection like
vehicle detection [9], [10], yet overlooking many complex
composite objects in optical RSIs (e.g., coal-fired power
plant and airport) which we should think of as a whole.
These complex composite objects provide essential support
for society (e.g., power plants for electricity generation and
airports for transportation), so monitoring them in RSIs is
equally important. With a target to identify these combined
complexes with multiple parts and nonrigid layouts, and
the difficulties arising from the complicated background and
blurred boundaries, it is a challenging research problem.

Compared with single-object detection, complex composite
object detection in RSIs is difficult for two reasons and Fig. 1
shows the comparison between complex composite objects and
single objects. First, these objects are characterized by intricate
parts with various layouts. For example, a coal-fired power
plant contains chimneys and condensing towers, and such
complex detection target involves problems including complex
spatial relationships between parts and nonrigid boundaries.
Nonrigid boundaries can enlarge the sizes of bounding boxes
and decrease the precision. The complex composite manner
indicates the parts are discrete, and other textures between
parts make the composite spatial relationships weak and dis-
turbed, leading to difficulties in detecting a composite object
as a whole precisely. Second, complex composite objects are
frequently situated amidst surroundings with similar textures,
further complicating detection. For instance, coal-fired power
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Fig. 1. Differences between complex composite objects (i.e., (a) coal-fired
power plants and (b) harbors) and single objects (i.e., (c) and (d) ships) in
optical RSIs. The green ovals in (a) and (b) denote the distinct parts of coal-
fired power plants and harbors. The red lines in (a) and (b) represent the
complex inter-relationships between parts in composite objects. Compared
with composite objects, single objects have clear-defined boundaries and
simpler backgrounds around.

plants are often located in industrial areas where other similar
industrial infrastructures may hamper coal-fired power plant
detection performance. Similar surroundings contribute to the
blurred boundaries and puzzle the bounding box localization.
Unlike single objects, such as cars or ships, which own a
unified structure and a unified semantic meaning without
significant internal complexity, composite objects, such as a
coal-fired power plant, are characterized by a more com-
plex structure composed of multiple semantic meanings with
internal complexity. As the red lines and green ovals in
Fig. 1(a) and (b), complex yet weak spatial inter-relationships
and blurred boundaries caused by multiple components with
various layouts make composite objects harder to detect than
single objects.

Nevertheless, commonly used CNN-based object detection
methods rely on feature extraction from local regions and
use these features to generate bounding boxes. For composite
object detection, these algorithms may fail to handle the
semantic gap between low-level features and high-level under-
standing of objects caused by complex and diverse spatial
inter-relationships between parts [11], [12]. Additionally, the
highly variable appearance of parts makes it difficult to
generalize across different instances of the same object [6].
Consequently, the direct application of existing algorithms
to composite object detection is ill-advised, and part-based
methods are better for discovering discriminative and subtle
components.

Part-based methods are used in fine-grained visual classi-
fication tasks [13], [14], [15], aiming to generate rich feature
representations [16], [17] or localize parts for feature enhance-
ment [14], [18], [19]. By modeling a complex structure as
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an assemblage of distinct parts that can be localized and
recognized individually, part-based methods offer heightened
efficacy for composite object detection. Recently, a few
efforts [6], [20], [21] have been made on part-based meth-
ods for composite object detection in RSIs. For example,
Sun et al. [6] proposed a unified part-based CNN-based
network consisting of a part localization module and a con-
text refinement module to localize the most representative
part features. Although previous work has reached promising
results, the attention to constraints on local feature learning
and simple concatenation of part features lead to the regardless
of discriminative parts and the potential in long-range spatial
inter-relationships. We argue that investigating the potential
correlation between parts and constructing a global semantic
understanding of objects can significantly benefit composite
object detection in RSIs.

To this end, we propose a relational part-aware network
(REPAN) to explore the inter-relationships and extract dis-
criminative features among multiple parts. The effectiveness
of REPAN is based on three main modules, i.e., a part region
proposal network (P-RPN) to discover discriminative regions,
and a feature relation Transformer (FRT) to construct the
correlation, and a contextual detector (CD) to detect parts and
the whole composite object. During the part region proposal,
multiscale features are fused by butterfly units (BFUs), reduc-
ing aliasing and confusion between different scale layers. The
peak responses in multiscale-aware features are then selected
to generate part proposal regions. After that, FRT discovers
global relationships and inter-relationships by part-and-global
joint learning with multiattention heads. To fully utilize the
contextual correlation, CD is proposed to combine part and
global features for final classification and detection.

In summary, our main contribution lies in the following.

1) We introduce the REPAN, a comprehensive solution
tailored for the complex composite object detection
RSIs, which is conceived as an end-to-end model, estab-
lishing both local and global correlations through the
integration of the weakly supervised part proposal and a
novel Transformer-based part-and-global joint learning
strategy.

2) To enhance the precision and robustness of discrimina-
tive part feature discovery, we devise a novel P-RPN
featuring BFUs. The incorporation of BFUs mitigates
feature confusion, enabling the network to identify
distinctive part features with greater accuracy.

3) We introduce an FRT to facilitate the learning of
relationships and foster high-level correlations between
global and part-specific features. This module empowers
the network to develop a holistic understanding of
objects, transcending the limitations of focusing solely
on single parts.

The remainder of this article is organized as follows. First,
we briefly introduce the related work in Section II. Then,
we elaborate our proposed method REPAN in Section III.
We illustrate experiment details, and comparative studies in
Section IV, and conduct ablation studies and discussion in
Section V. Finally, the conclusion of this article and future
work is presented in Section VI.
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II. RELATED WORK
A. Composite Object Detection in RSIs

Composite objects hold equal significance alongside single
objects in terms of both natural and social attributes [6].
However, the lack of targeted methods for detecting composite
objects in RSIs poses challenges in effectively monitoring
them, thereby significantly impacting local development, urban
planning, and ecological preservation. This gap has recently
garnered attention, leading to the emergence of specialized
techniques aimed at detecting composite objects in RSI.
Works [22], [23], [24], [25], [26], [27], [28] utilized traditional
CNN-based methods to detect composite objects, such as
airports, schools, etc. For example, Cheng et al. [23] proposed
an anchor-free-oriented proposal generator to detect oriented
coal-fired power plants in the DIOR-R dataset. Yao et al. [25]
proposed a two-stage network to detect airports and express-
way service centers. Cheng et al. [29] designed a two-stage
method to address the misalignments of spatial and feature in
oriented airport detection. Cheng et al. [30] proposed a spatial
and channel Transformer to capture the deep correlations
for oriented coal-fired power plant detection and so on.
Cai et al. [31] used hard example learning and a weight-
balanced strategy in airport detection to improve performance
within an overwhelming number of easy examples and a few
hard examples. Fu et al. [32] proposed a CNN-based one-stage
detector with a feature-enhanced module to detect schools.
However, traditional CNN-based methods cannot handle the
complex and various component layouts and distribution and
the detection performance is limited. Works [6], [20], [21]
then developed part-based methods to generate rich fea-
ture representation and get discriminative part features. For
instance, Yin et al. [20] designed a multiattention part-based
network for coal-fired power plant detection. The context
attention module and part-based attention module strengthen
the component features. Qian et al. [21] developed a part-based
topology distillation network for composite object detection
in RSIs by locating the discriminative part features. However,
the aforementioned works all focused on local feature rep-
resentation [green ovals in Fig. 1(a) and (b)], regardless of
the semantic relationships between local features [red lines in
Fig. 1(a) and (b)]. Thus, in this article, we aim to not only
discover discriminative part information but also reveal the
spatial relationships in composite objects via our proposed
method.

B. Part-Based Methods

Compared with standard object detection methods (i.e.,
SSD [33], Faster R-CNN [34], Cascade R-CNN [35], Libra
R-CNN [36], etc.), part-based methods have emerged as a
powerful approach in tackling the challenges of fine-grained
visual classification tasks by dissecting objects into distinct
components or parts, focusing on local regions that contain
discriminative cues. For example, Fu et al. [26] developed
the RA-CNN, which used a recurrent learning approach
to locate the most discriminative region in an image and
improve classification accuracy. Zheng et al. [37] proposed
MA-CNN where part generation and feature learning can

reinforce each other via multiattention. Zheng et al. [38]
designed PA-CNN to realize fine-grained object detection
via progressive-attention learning step by step. Ji et al. [39]
proposed ACNet, which contained an attention convolutional
binary neural tree architecture for weakly supervised fine-
grained classification. Ding et al. [40] proposed AP-CNN
which enhanced the performance by learning both high-level
semantic and low-level detailed feature representation. Part-
based methods are appropriate for composite object detection
in remote sensing because composite objects in RSIs usually
consist of multiple parts with different textures, shapes, and
scales. CNN-based detectors that treat the object as a whole
may not capture the subtle but crucial differences between
the parts of the object. Instead of holistic understanding,
part-based methods are capable of localizing and extracting
important part regions of the object in the presence of back-
ground interference. However, existing work on composite
object detection in remote sensing which utilizes part-based
methods all focus on local feature representation, regardless
of the potential relationships between local features, which we
think can develop a semantic understanding of the detector.
Therefore, in this work, we propose to detect composite
objects via two steps in one unified framework, i.e., discover-
ing the discriminative parts and exploring the potential spatial
relationships.

C. Transformers in Vision

Transformers are a type of neural network architecture that
has gained significant popularity in natural language process-
ing (NLP) tasks due to their strong capability to construct
long-range dependencies in text [41], [42]. They have recently
been introduced to computer vision tasks and achieved promis-
ing results [43], [44], [45]. Unlike traditional CNN, which
relies on local spatial relationships, Transformers capture
global contextual information by attending to all image regions
simultaneously. For example, the very first work, ViT [43], uti-
lized a fully Transformer architecture for image classification.
The multihead self-attention mechanism helped the network
understand global-range relationships. However, the strong
ability also brings high computation costs. Works [44], [46]
attempted to combine CNN and Transformers, exploiting
the advantages from both sides: reduced computation costs,
local feature understanding and global-range understanding.
For example, Liu et al. [44] designed shifted windows to
reduce the computation complexity in high-resolution images.
Due to the holistic relationship understanding ability, in this
article, we introduce an FRT to encourage global-and-part
joint learning for exploring relationships between the globe
and parts in composite objects. With the combination of
CNN and Transformers, the network can learn local feature
representation and build holistic semantic correlation in the
meantime.

ITI. APPROACH
A. Preliminary and Overview

Given an input image 7 and the respective ground-truth
label y, our ultimate goal is to find a suitable detection function
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with discriminative part proposals (three proposals as an example). Resized part proposal features and global features form multiple feature pairs as the
input of FRTs with the part branch and the global branch. This global-and-part joint learning constructs holistic-and-inter relationships. The CD then utilizes

relation-aware features for final detection.

F that calculates y = F(Z), which means we need to optimize
the loss £ between predicted values and labels

0* =argmin L(F(Z | R, P),y) (1)
%

where 0* is the optimized learned parameters generated by
the optimized £, and 0 represents the learned parameters.
The detection results rely on clear spatial relationships R
and strong part feature representation P. Assuming the object
is in one image, because REPAN will reveal both part
and global relationships through Transformers .4, we could
divide the optimization body into global optimization and part
optimization

6* = arg min {,c(f((z | AT; 6, )
6
+ Y Wp(LF(E | AT 9p),p),y)))} (2)
P

where 0y, ) represent the global and part learned parameters
through Transformers, and A, represents the individual part
weight. Therefore, we divide the optimization problem in this
work into three aspects: 1) strong part feature representation;
2) clear holistic correlation construction; and 3) clear intercor-
relation construction. Thus, our proposed network is designed
to model these factors via accurate part proposal discovery and
a clear correlation understanding of our strategy is illustrated
in Fig. 2. First, we localize the discriminative parts through
P-RPN to get strong part feature representation, and then
construct the inter-and-holistic correlation between localized
parts and the globe through FRT. Finally, we combine part and
global features through a CD to fully utilize the contextual
correlation for final classification and detection. We will
explain the details in the following sections.

B. Part Region Proposal Network

In traditional object detection tasks, generating region
proposals from the discriminative information of the object
features is vital before detection, where region proposal
network (RPN) is most widely used [34]. Vanilla RPN utilizes

feature maps from Faster R-CNN to generate proposals.
Recently some works [12], [47], [48], [49] designed multiscale
feature fusion methods to fully utilize pyramid features.
For example, work [48] proposed a multiscale convolutional
feature fusion strategy to use the highest-level feature map
to supervise multiscale feature maps, making full use of
semantic information in high-level features. By applying a
feature pyramid, small-scaled components can be obtained in
shallow-layer features and large-scaled components can be
found in deep-layer features. Despite the promising results of
these feature fusion strategies, there remains a critical gap in
addressing the feature-scale confusion problem. Investigating
this issue is paramount for mitigating the inherent scale
variation challenges observed in part regions within composite
object detection. Feature-scale confusion problem refers to
the challenge in distinguishing features related to small-
scale components from those associated with large-scale
components in pyramid features, particularly in the context
of composite object detection. Shallow-layer features contain
rich detailed information beneficial for detecting small-scale
components. However, they may also include characteristics of
large-scale components, leading to interference in accurately
localizing small components. Conversely, deep-layer features
emphasize information about large-scale components, caus-
ing a decay in the representation of detailed and location
information reserved in shallow layers. This feature-scale
confusion hinders precise detection, especially in scenarios
involving composite objects with diverse scales. As a result,
kinds of multilayer fusion by convolution layers can neither
address this feature-scale confusion problem nor extract the
inter-relationship between certain parts, let alone lead to
additional computation costs from convolutions. Hence, we
propose a P-RPN to address the feature-scale confusion caused
by aliasing effects, exploring the relationship between different
scale feature representations containing different parts without
extra convolution computation costs.

As shown in Figs. 2 and 3(a), we assume that input pyramid
features have four levels (i.e., {Fi, F3, F3, F4}). With the
number increasing, the feature transfers from the shallow
to deep layers. To extract the relationship between different
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Details of (a) P-RPN and (b) BFU. The pyramid features are fused progressively to alleviate the feature confusion problems with various scales.

Top-P discriminative part proposals are then discovered in the generated multiscale-aware pyramid features.

feature representations in shallow layers Fs and deep layers
F4, we embed the BFUs in the P-RPN. Instead of using
convolution layers, BFUs follow an unsupervised manner. As
Fig. 3(b) shows, first Fy and F are transformed to F’ fl and F f
by upsampling ) and downsampling |}, to keep the spatial
resolution the same as Fs and F;. To obtain more representa-
tive features and filter out less relevant information, a K-global
average pooling (KGAP) along the channel dimension with a
Sigmoid activation layer is placed after the up/down sampling
to get the corresponding attention maps A} and Af of the
transferred features F’; and F¢. The attention maps can be
described as follows:
Fy=F,", Fd=F! 3)

s
1 K

KGAP(,'J‘) = } ZFéi,j) (x) (4)
=1

A% = ¢(KGAP(FY)), A? = g(KGAP(Ff)) (5)

where Ffl.‘ i
Ith feature map F’, and ¢ means the Sigmoid function.
KGAP; j, means conduction of global average pooling on K
representative values at the position (7, /) along the channel
dimension. KGAP calculates the average value across a set
of representative values (K values) at each position along the
channel dimension. By aggregating information across feature
maps, KGAP can obtain more representative features and
selectively emphasize important spatial positions. Note that the
selection of K along the channel dimension has a threshold T
to filter unrelated pixels simply, and the values that are larger
than T can be inputs of KGAP

)(x) means the value at the position (i,j) in the

C
1 1
T== ; Flj ;). (6)

Thus, attention maps indicate the different discriminative
parts from the channel aspects. The inter-relationship between
Fs and F; is obtained by the pixel-wise multiplication of
the attention maps with the corresponding features. Then,
F is further fused with the inter-relationships by pixel-wise
subtraction to focus on the small parts. Fy is further fused
with the inter-relationships by pixel-wise addition to gain more

detailed information about significant components. These can
be denoted by

ﬂ
E =Fo(Fioal), Ei=Fio(F o). 0

Therefore, for the original pyramid features with four levels
with three BFUs embedded hierarchically as Fig. 3(a) shows,
we can obtain four multiscale-aware pyramid features (i.e.,
{E1, Ey, E3, E4}), which own the specific feature representa-
tions in various levels concerning the relationship between
parts with different scales.

We note the peak response coordinates in each channel
of each multiscale-aware pyramid feature. Then, we flat-
ten multiscale-aware pyramid features and mark the peak
responses R. Since the peak responses indicate the accuracy
and confidence of prediction for corresponding regions, we
generate part proposals according to these peak responses.
With the initial anchor settings A, we select the P most scored
parts with different scales to locate the discriminative parts.
We also apply soft nonmaximum suppression (Soft-NMS) [50]
to eliminate the overlapping anchors. As a result, our P-RPN
is able to find the most discriminative parts with improved
precision and less computation cost. The main idea of the
P-RPN is shown in Algorithm 1. Note that P-RPN is in a
weakly supervised manner. Given image-level annotations, we
can follow this coarse-grained label to extract discriminative
part proposals, and then construct the discriminative part
feature representation.

C. Feature Relation Transformer

After obtaining the most discriminative parts P, we
have addressed one of the dependencies in composite
object detection mentioned in (1), the strong part feature
representation. Then, the main problem is building inter-and-
holistic semantic relationships between parts and the globe.
The vanilla Transformers in vision can extract the long-term
dependencies between pixels, yet with high computation costs.
It is efficient to embed Transformers into CNNs, with larger
receptive fields, lower computation costs, and an end-to-end
training manner. Thus, we design an FRT combined with
CNN architectures to investigate the correlations. The detailed
architecture is shown in Fig. 4. Ideally, building correlations
between every two parts can promote contextual understanding

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 29,2024 at 13:01:15 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Patches

.

o

5

g—®—

R

) |

[ ] Q
‘ O

5

(@)

IEEE TRANSACTIONS ON CYBERNETICS

g € RWHXWH
1 T

C—®-

90—
|
e
Relative Position
Encoding

(b)

- ®
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holistic relationships around the globe. We set one feature pair as an example. Multiple feature pairs with a multihead attention mechanism build effectiveness.

Algorithm 1 P-RPN
Input: Input image Z, Hyperparameters: Number of pyramid
features X, Number of parts P, Initial anchor settings A
Output: Discovery part set: P =
{p1,p2,....pP}
1: Initialize discovery part set P = @, and multi-scale aware
pyramid features E = ¢
2: Generate vanilla pyramid features from Z through back-
bone F = {Fy, F3, ..., Fx}
: while i < X —1 do
(Ei, Eir1) = BFU(F;, Fiy1)

3

4

5. Fip1 =Ein

6: E append (E, E;)

7. i=i41

8 else

9: E append (E, E;, Ei+1)

10: end while

11: Rearrange E and mark peak responses R
12: Sort R and select top P peak responses
13: Generate anchors A(R)?_,

14: P append P; = SoftNMS(AR)Y_))

15: return P = {p1,p2, ..., ppr}

maximally. However, the surge in computation costs will also
influence performance. In addition, different part features with
different confidence should not share the same weight. Part
features with higher confidence should have more chances to
interact with other parts, and global features can interact with
all part features to build holistic correlation. Therefore, the first
step is rescaling part and global features for later joint learning
in Transformers. We resize part proposals to the same size
with the input image (i.e., 512 x 512) and then resend the part
proposal set P back to the backbone to extract the part features
M = M|, M, ..., Mp} € RW* HXC \where the confidence
decreases progressively since M. To build the correlation,
we divide the construction into two branches. For the global
understanding, we let the global feature G € RWx HxC
and every single part feature (Mi)f; | form an input pair
[(G, M), (G, M>),...,(G,Mp)]. For the inter-relationship
construction, every part feature M} combines with every other

part features with lower confidence (Mi)fzk 41 to form an input

pair - [(M1, M), ..., (My, Mp), (M2, M3), ..., (Mp_1, Mp)].
In total, we will get a number of Njy = P+ P(P — 1)/2
input pairs and output Noyt = P/2+ P(P — 1) /4 transformed
features.

Patch Partition: As Fig. 4 shows, the patch partition has
two branches. For interunderstanding, the input feature pair
{lM;, Mp],i > j,{i,j} < P} is first cropped and flattened
into a sequence with a size of 16 x 16. The sliding window
keeps an overlapping size of 8 to maintain the consistency
of the cropped features. Therefore, the feature dimension of
each patch is 16 x 16 x C, and the number of patches is N =
2 x |[(H—28)/8] x [(W—28)/8]. A linear embedding layer is
set after the patch partition to gain the linear projection with
a shape of 16 x 16 x C'. For global understanding, the input
feature pair {[(G, M;)], i < P} remains unchanged due to our
2-D relative position encoding strategy.

Position Encoding: Position encoding can preserve the orig-
inal structural information when transforming the feature maps
into multiple vectors [41]. This spatial location information
in the patch level provides contextual understanding and
promotes prediction performance. Similar to the patch partition
process, position encoding also has two branches for local
and global understanding, respectively. For interunderstanding,
we want to build the intercorrelation map C; € RV*V which
shows the relation level of every single patch in one part to
other patches in another part in the feature map. We have two
sequences of patches through the linear embedding layer. We
follow [43] to build 1-D absolute positional information for
these two sequences in the raster order. Then, we formulate
the process as

Zo=|Mlm. oMol e e ] @
Cr=ZWo(zWx)', i<j<P )

where Z; ; denotes the output after position encoding, and Mf
represents the jth patch in the original feature M;, and &}
means the 1-D position encoder corresponding to the ith patch.
W(q,k; is the learnable matrix of query and key projection.
For global understanding, we want to build a global correlation
matrix Cg € RWAXWH This matrix shows the relation level of
each single pixel to all the other pixels in the feature map. To
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receive the long dependencies between pixels in grid, we here
follow [51] to employ relative position encoding in contextual
mode. The process can be formulated

Ce = Qi,:WQW1T<gf;

+Gi-Wo (rf:;j,:)T + G;. Wk (rg:;j):)T (10)

where {Q, K} denotes the query and key, and R denotes the
encoding matrix. Wq kj is the learnable matrix of query and
key projection, and r denotes a trained vector.

Multihead Attention: After patch and position embedding,
the generated correlation maps can represent the holistic-and-
inter relationships between pixels. Further, we multiply the
correlation maps with the value projections Vi of original
features to get multiple Transformer heads H(g 1

exp{Ce.n}/+/C Vies
Y exp(Clen.H/NC

For each Transformer, we generate H Transformer heads
with different projection weights of query, key and value,
which could largely promote the construction of relation
learning. Then, the attention heads are concatenated and
further sent to a convolution layer to obtain relation-aware
feature maps. To be specific, for global relationship between
(G, M) and inter-relationship between (M;, M;), we have two
kinds of relation-aware feature maps

Hiny = (11)

Ol = Conv(Concar(H(®, ... Hi))  (12)
0! = Conv(Concat(H|/”, ..., Hy)). (13)

D. Contextual Detector

To fully utilize the relation-aware feature maps from global
and part aspects, we design a two-branch detector to obtain
both global and part classification (see Fig. 2). The first branch
takes the part-aware feature maps as inputs and classifies
the parts by part annotations. The second branch fuses the
part and global aware feature maps to form a more powerful
representative feature for whole complex detection. With
two fully connected layers and two ReLU activation layers
subsequently, the features are reformed to a confidence matrix.
In order to classify the parts and locate the bounding boxes,
with training the detector in an end-to-end manner, we design
a multitask loss function Lpa

Lpan = Lyeis + Lyioc + Lploc + chls
= A (Lets (S, C&' + Ao [C8 > 0]Lioc(B", BS'))
4
+ 230 (Lets(s, ¢ + Aafcs’ > O] Line (B", b)) (14)

s=1

where A1, Az, A3, and X4 are hyperparameters to balance
different losses; Lioc is the bounding box loss (i.e., GloU
Loss [52]) for both global and part detection, where B" is
the regressed bounding box for the whole object, and B$'
is the ground-truth bounding box for the whole object, and
b" is the regressed bounding box for parts, and b8’ is the
ground-truth bounding box for parts; L. is the classification

loss for the global and part classification (i.e., softmax cross
entropy loss), in which S means the prediction of the whole
classification, and s means the prediction of part classification,
and C8' means the ground truth of whole object labels, and
¢%" means the ground truth of part labels.

IV. EXPERIMENTS AND EVALUATION
A. Dataset

Because there is a lack of open-source composite object
detection datasets in RSIs, we collect a remote sensing
complex composite object detection dataset to validate the
performance of our proposed method based on three different
open-source remote sensing datasets, i.e., DIOR [53], BUAA-
FFPP60 [54], and DOTA [55], [56]. The DIOR dataset is one
of the largest high-resolution remote sensing object detection
datasets, containing 20 categories and over 20000 annotated
images. The BUAA-FFPP60 dataset contains 1-m spatial
resolution RSIs of over 60 coal-fired power plants in the
Beijing-Tianjin—Hebei region in North China. The DOTA
dataset contains 15 common categories with a wide variety
of scales, orientations, and shapes. Three datasets share the
same source (i.e., Google Earth) and the same resolution
range (i.e., < 1 m), guaranteeing consistency in our collected
dataset and the training process. As Table II illustrates, we
collect coal-fired power plants from BUAA-FFPP60, harbors
from DIOR and DOTA, airports from DIOR and DOTA, and
expressway service areas from DIOR. For the coal-fired power
plant, parts (i.e., chimney and condensing tower) form the
whole functionality and structure. For one harbor, multiple
shipyards are distinguishing parts from the whole harbor. For
one expressway service area, the areas located on both sides of
the expressway are different parts. For the airport, the airport
runway and the terminals as parts consist of the whole airport.

B. Parameter Settings

We conduct our experiment on PyTorch deep learning
framework [59], with 4 NVIDIA GeForce RTX 2080 Ti GPUs
and 50 training epochs. The batch size is set as 4. The learning
rate starts at 0.05 and decreases by a decreasing factor of 0.1
after every 10 epochs. We use mini-batch stochastic gradient
descent (SGD) [60] as the optimizer for classifier training, and
set a momentum of 0.9 and a weight decay of 0.0005. We set
anchors with ratios of {0.2, 0.3, 0.5, 1, 2, 3, 5} and scales of
{100, 150, 200, 400}. Besides, we also use multiscale training
with the long edge set to 2000 and the short edge randomly
sampled from [400, 1400], and online hard example mining
(OHEM) [61] to handle hard example learning. Additionally,
Soft-NMS [50] is also used to eliminate overlapping proposals.

C. Comparison With State of the Arts

We conduct a comparative study between our proposed
REPAN and other state-of-the-art models on our collected
dataset, including five standard object detection methods (i.e.,
Faster R-CNN [34], SSD [33], Cascade R-CNN [35], Dynamic
R-CNN [57], Libra Faster R-CNN [36]), five part-based
object detection methods (i.e., RA-CNN [58], MA-CNN [37],
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TABLE I
COMPARISON RESULTS ON OUR COLLECTED DATASET, INCLUDING COAL-FIRED POWER PLANT, HARBOR, EXPRESSWAY
SERVICE AREA, AND AIRPORT (%)

Method Coal-fired power plant Harbor Expressway service area Airport Average
Precision  Accuracy  Precision  Accuracy  Precision Accuracy Precision  Accuracy  Precision  Accuracy
SSD [33] 69.08 68.41 53.02 49.53 72.56 72.02 71.38 73.12 66.51 65.77
Faster R-CNN [34] 69.95 72.98 52.29 52.76 73.89 72.08 72.11 71.53 67.06 67.34
Cascade R-CNN [35] 74.27 74.15 58.34 58.92 75.76 74.33 74.16 75.54 70.63 70.74
Dynamic R-CNN [57] 74.14 75.80 56.72 58.45 75.24 77.07 76.60 72.84 70.68 71.04
Libra Faster R-CNN [36] 80.89 81.43 66.23 69.16 77.13 79.92 80.27 81.48 76.13 78.00
PBNet [6] 85.22 84.71 73.42 76.83 84.58 83.29 84.79 85.10 86.57 83.78
PCAN [20] 84.19 86.24 71.80 73.99 85.09 86.27 85.61 85.36 83.15 84.12
RA-CNN [58] 84.74 84.70 71.52 72.85 83.67 85.73 87.11 85.19 81.76 82.12
MA-CNN [37] 86.43 84.59 73.31 73.48 83.34 85.51 87.54 88.40 82.66 83.00
PA-CNN [38] 88.86 88.11 76.45 77.32 86.83 85.91 88.36 89.12 85.13 85.12
ACNet [39] 87.32 86.24 78.94 80.89 88.79 90.25 89.64 89.83 86.17 86.80
AP-CNN [40] 88.32 90.41 81.67 83.02 89.28 91.46 89.48 90.21 87.19 88.78
REPAN (Ours) 90.32 90.37 82.87 84.49 89.28 92.74 90.19 90.36 88.17 89.49
TABLE 11

DETAILED INFORMATION OF THREE OPEN-SOURCE
DATASETS USED IN OUR WORK

Dataset DIOR [53] BUAA-FFPP60 [54] DOTA [55], [56]

Source Google Earth Google Earth Google Earth
Resolution 0.1-1m Im 0.1-1m
Category Expr;ls\rvb;; g;gif; Area pocvf::ll'-glrzgls Harbor, Airport
Training 1,873 800 643
Testing 2,036 92 285

Total 3,909 892 928

PA-CNN [38], ACNet [39], and AP-CNN [40]) and two
composite object detection methods for RSIs (i.e., PBNet [6]
and PCAN [20]). Table I lists the accuracy and precision
of the aforementioned methods on our collected dataset.
Because some part-based methods are in a weakly supervised
manner, to be fair, we use image-level annotations in air-
port detection, harbor detection, and expressway service area
detection. We employ complete humancrafted annotations,
including part- and image-level labels only in the comparison
of coal-fired power plant detection. Based on the same exper-
imental settings for all methods, our REPAN achieves leading
performance over other methods.

Comparison on Coal-Fired Power Plant Detection: Our
REPAN achieves the best performance concerning both accu-
racy and precision at 90.37% and 90.32%, respectively. We
can find that Libra Faster R-CNN [36] achieves the best
performance in the standard method category, but is out-
performed by REPAN by 9.43% in precision and 8.94% in
accuracy. AP-CNN [40] outstrips all other part-based methods
with a precision of 88.32% and an accuracy of 90.41%.
REPAN still reaches a gain of 2.0% in precision, with a 0.04%
loss on accuracy.

Comparison on Harbor Detection: REPAN still has the
leading position with an accuracy of 82.87% and a precision
of 84.49%, outperforming the second-best method (AP-
CNN [40]) by a margin of 1.2% in precision and 1.47% in
accuracy.

Comparison on Expressway Service Area Detection:
Expressway service areas have more heterogeneous sur-
roundings, making detecting them easier. Thus, recent
part-based methods, i.e., AP-CNN [40] and ACNet [39], both
achieve good results of 89.28% and 88.79% in precision.
Though similarly good performance is achieved by other
methods, our method can reach higher performance with
an accuracy of 92.74% and reach equal performance in
precision.

Comparison on Airport Detection: Even though the
ACNet [39] achieves high scores with a precision of 89.64%
and an accuracy of 89.83%, our REPAN still shows better
performance, reaching a precision of 90.19% and an accuracy
of 90.36%. We can see that exploring inter-relationships and
building holistic understanding provide promising potential
and performance on different kinds of composite object
detection.

Visualization Comparison: Fig. 5 shows the visualization
comparison results. We visualize the detection results of our
REPAN and other state-of-the-art methods on four composite
object categories. The results are divided into comparisons
with part-based methods and comparisons with standard object
detection methods for better observation. In the coal-fired
power plant detection (the 1st row and the Sth row), we
can find that our REPAN clearly classifies all parts of coal-
fired power plants and detects the whole coal-fired power
plant properly, achieving the best performance against all
other methods. Part-based methods basically detect the whole
coal-fired power plant, but the location and the range are
not accurate. Besides, the fine-grained detection of parts is
confusing, affected by similar surroundings and the smoke.
The standard object detection methods generate multiple
redundant bounding boxes which exceedingly decrease the
accuracy. In the harbor detection (the 2nd row and the 6th
row), there are similar situations to that in the coal-fired
power plant detection. AP-CNN also generates redundant
bounding boxes influenced by the ships. In two simpler
tasks, the expressway service area detection (the 3rd row
and the 7th row) and the airport detection (the 4th row
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Fig. 5.
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Visualization results of the comparison study. (a) Input images; (b) ground truth; (c) REPAN (ours); (d) AP-CNN [40]; (e) ACNet [39]; (f) PA-

CNN [38]; (g) MA-CNN [37]; (h) RA-CNN [58]; (i) Dynamic R-CNN [57]; (j) Libra Faster R-CNN [36]; (k) Faster R-CNN [34]; (I) SSD [33]; and

(m) Cascade R-CNN [35].

and the 8th row), most models achieve better performance
compared with their own performance in the tasks before.
However, our REPAN still has the best performance for
accurate bounding boxes which are closest to the ground
truth.

In summary, the comprehensive experimental results show
the robustness and ability of our REPAN across diverse
composite object detection scenarios. Compared with existing
methods, including part-based methods, standard methods,
and composite object detection methods in remote sensing,
REPAN outstands by two pivotal factors: 1) extracting strong
part feature representations via P-RPN and 2) building clear
spatial relationships via FRT.

V. DISCUSSION

In this section, we conduct ablation studies for REPAN,
discussing the effectiveness of each component in our work,
including the part feature representations by part region
proposal, the relationship awareness by FRT, and the joint
correlation-aware features. We will also analyze the advan-
tages and disadvantages of our methods compared with other
latest methods, regarding the feature fusion ways, computa-
tion efficiency, etc. Through these deliberations, we provide
insights into the effectiveness of REPAN while offering a
comprehensive understanding of its operational mechanisms.

Effectiveness of Part Region Proposal: Fig. 6 shows the
effectiveness of part region proposal from the perspectives of
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Fig. 6. Ablation study on P-RPN. We examine the effects of BFU and the
number of parts P. The green line denotes the model is with BFU. The blue
line denotes that we remote BFU directly. The orange line denotes that we
replace BFU with convolution layers.

the number of parts P and the embedded BFUs. Considering
the multiparts in one image, the value of P should be at
least 2. We can see that with the value increasing, the precision
increases at the beginning and then decreases when P is larger
than 8. When the value of P is comparatively small, the real
number of parts in one image exceeds the value, so it is hard
to represent all the part features by an insufficient value of P.
When the value is larger than 8, part proposal redundancy
and confusion hinder the learning of discriminative features,
leading to a drop in precision. As for the effectiveness of BFU,
we conduct ablation experiments by simply removing BFU
and replacing BFU with convolution layers. We can see that
BFU still outperforms convolution layers no matter what P is.
For example, when the P equals 8, if we remove the BFU and
directly concatenate pyramid feature maps, the precision drops
from 88.17% to 85.41%. If we replace BFU with convolution
layers, the precision drops to 86.29% with about two times
more model parameters and computation cost. Our final model
holds about 28.8 M parameters for learning compared to the
model with convolution layers of 45 M.

To be direct, we visualize the comparisons in Fig. 7. We
can see the part region proposal with BFUs can locate sig-
nificant parts more precisely by identifying the clear semantic
information of the particular features. The part region proposal
without BFUs may select some unrelated regions, influencing
the later detector decision and increasing the possibility of
false detection. With BFUs, the selected parts are more dis-
criminative, which indicates the network pays more attention
to the important parts and eventually contributes to better
detection performance.

Also, we compare the effectiveness of BFU with other
feature fusion methods. Table III shows the comparison of
different feature fusion methods. To be fair, we embed
these feature fusion methods into our network to make
comparisons. P-RPN not only outperforms other methods
regarding precision and accuracy but also owns less computa-
tion complexity. It can be illustrated from two aspects. First,
different feature fusion methods have different orientations.
Even though other feature fusion methods have promising
performance on public datasets, these cannot address the
feature-scale confusion problem. Designed for single-object
detection, these methods just aim to make full use of semantic

IEEE TRANSACTIONS ON CYBERNETICS

Fig. 7. Effectiveness visualization of BFU. We here take the coal-fired power
plant detection task as an example. (a) and (c) are the part proposals generated
by P-RPN with BFUs and the zoom-in images of parts. (b) and (d) are the
part proposals generated by P-RPN without BFUs and the zoom-in images
of parts. (e) and (f) are the part proposals generated by vanilla RPN and the
zoom-in images of parts. P-RPN with BFUs can effectively discover the most
discriminative parts in the image. More unrelated regions will be selected by
P-RPN without BFUs. Vanilla RPN cannot extract the most useful proposals
and the most harmful is that vanilla RPN can only recognize each part as
a single object, not a part, resulting in a non-end-to-end composite object
detection.

TABLE III
COMPARISON OF FEATURE FUSION METHODS

Method Precision  Accuracy  Params
Aug-FPN [12] 85.13 86.73 32.4M
AF-FPN [47] 81.94 79.98 31.8M
Qu et al. [48] 84.27 85.36 30.9M
MF2CNet [49] 83.09 84.25 34.7M

BFU (Ours) 88.17 89.49 28.8M

information. However, P-RPN is designed for composite object
detection, which can erase large object features in shallow
layers and add detailed information to deep layers. Addressing
feature scale confusion is vital for accurate composite object
detection, ensuring precise localization of diverse object
components and facilitating semantic understanding of their
relationships. Second, these methods are implemented with
convolution layers, which increase the computation complexity
and model parameters. BFUs in P-RPN only use pooling,
multiplication, addition, and subtraction to complete scale-
aware feature generation. This indicates that BFUs designed
for feature-scale confusion problems are proper for composite
object detection, which may not perform on single-object
detection as well as on composite object detection.
Effectiveness of FRTs: To evaluate the effectiveness of the
FRTs, here we conduct the ablation studies on global—part
branches, position embedding, and the number of attention
heads #H. As Table IV shows, when we only use the
global branch or part branch, the precision drops to 86.96%
and 87.42%, respectively. It indicates that building local
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TABLE IV
ABLATION STUDY ON FRT (%)

TABLE V
ABLATION STUDY ON CD (%)

Branch  Number of attention head H  Position encoding Precision
N/A N/A X 84.43 (baseline)
v 86.78
2
X 86.61
v 87.42
Part 6
X 87.37
v 87.47
10
X 87.41
v 86.80
2
X 86.75
v 86.96
Global 6
X 86.94
v 86.81
10
X 86.75
v 87.54
2
X 87.49
v 88.17
Both 6
X 87.89
v 87.74
10
X 87.61

or global relationships alone can cause a loss of attention
and information from the other side. Besides, the difference
between the two precision results shows part inter-relationship
exploration may play a more important role in the learning
process. The position embedding also contributes to a little
improvement in precision. There are some decreases when we
remove the position embedding, no matter whether we use
both two branches or not. However, the differences are com-
paratively small compared with other components. Table IV
also demonstrates the effectiveness of the right number of
attention heads . The detection performance will decrease if
‘H is lower or higher than 6. Specifically, the precision with
2 or 10 heads are 87.91% and 87.74%, decreasing by 0.26%
and 0.43%, respectively. Too few attention heads bring less
learnable weights and limit the learning ability of the model.
Too many attention heads will lead to insufficient learning and
a larger computation cost.

Effectiveness of CD: We verify the contributions of the
fusing features (global-aware feature maps with part-aware
feature maps) in boosting detection performance. We compare
the performance of whole composite object detection by
involving the part-aware features and only using the global-
aware features. Table V shows the combination of part-aware
features with the global-aware features can improve the detec-
tion performance by 3.04% in precision. The global-aware
features or part-aware features alone could also improve the
performance compared with the original global features by
2.95% or 2.79% in precision. It proves that the fusion of
discriminative part information does not only help to classify
and localize the parts, but also be beneficial for whole object
detection.

Feat Original Global-aware  Part-aware Global-aware
catures features features features with part-aware features
Precision , o> 18 85.13 84.97 88.17
(baseline)
TABLE VI

COMPARISON OF COMPUTATION EFFICIENCY

Model GFlops |  Params |
RA-CNN [58] 37.8 33.0M
MA-CNN [37] 355 30.5M

ACNet [39] 33.1 30.0M
AP-CNN [40] 31.9 28.0M
Full 31.8 28.8M
REPAN —P-RPN 31.0 27.9M
—FRT 25.6 20.8M
—-CD 29.7 27.7M

TABLE VII

SELECTION OF HYPERPARAMETERS IN MULTITASK LOSS FUNCTION

A1 A2 A3 A4 Precision
1 1 1 1 85.93
2 2 1 1 85.09
1 1 2 2 88.17
1 1 2 1 86.74
1 1 1 2 86.50

Computation Efficiency and Hyperparameters: To make a
full comparison and evaluate effectiveness from all aspects,
here we compare our method’s efficiency with existing
approaches and compare different modules’ computation
costs to offer a comprehensive perspective on computational
performance. As Table VI shows, REPAN has the least GFlops
compared with the existing SOTA part-based methods, with
the second least parameters. Besides, we compare different
modules’ computation costs, which shows the FRT contributes
the most computation costs compared with the other two
modules. We also conduct an ablation study on the hyper-
parameters in the multitask loss to analyze their influence
on the model performance. As Table VII shows, we conduct
five experiments with different value combinations. When we
set all parameters as 1, all tasks share the same importance.
When we pay more attention to the whole object detection,
the precision drops a little. The precision reaches the highest
when we pay attention to the part detection. It may indicate
in composite object detection tasks, the classification and
localization of parts are more important and challenging than
those of the whole object, which is also intuitive because
the more clearly the model understands and detects parts, the
better the detection of the whole object can be achieved.

In summary, our ablation studies on part region proposal,
FRT, and CD confirm the following.

1) Both strong part feature representation and clear

semantic correlation contribute to the improvement of
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composite object detection performance. Existing works
just focus on strong part feature representation, but it
is also the relationships between parts that lead to the
distinct characteristics of every single composite object.
Thus, exploring the potential relationships beside strong
part feature representation brings improvements.

2) Effective fusion of global-aware features and part-aware
features is good for final detection. Simply utilizing
global-aware or part-aware features can also improve
the performance because of the reveal of correlation.
Feature fusion improves the performance further, which
can be assumed that it combines global correlation and
part correlation, where joint awareness of the correlation
between parts and the globe is realized.

VI. CONCLUSION

In this article, we focus on the complex composite object
detection in RSIs and propose a REPAN. We are the first
to point out that composite object detection is based on
part feature representation and spatial relationships. For part
feature representation, we design a P-RPN to discover dis-
criminative parts robustly and precisely by alleviating the
feature confusion. For spatial relationships, it is the first time
to propose an FRT to build the holistic and intersemantic
correlation by global-and-part joint learning. The potential
correlation between the globe and parts addresses the problems
of complex weak spatial relationships and similar texture
disturbance. With the relation-aware features generated by
Transformers, the CD conducts final detection with promising
performance. Evaluations of our collected dataset with four
categories and the comprehensive ablation studies demonstrate
the superiority of our proposed REPAN. In the future, we will
continue to explore the large-scale application ability of our
REPAN.
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