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A B S T R A C T   

Coconut (Cocos nucifera L.) is one of the world’s most economically important tree species, and coconut palm 
plantations dominate many islands and tropical coastlines. However, the expansion of plantations to supply 
international markets threatens biodiversity. Therefore, monitoring the plantations is important not only for the 
food industry but also for evaluating and mitigating environmental impacts of the industry. However, the 
detection of coconut trees from space is challenging because the palms’ crowns hold only limited pixels of high- 
resolution optical imagery. 

Here, we present an accurate and real-time COCOnut tree DETection method (COCODET) which uses satellite 
imagery to detect individual palms, comprising three components. First, an Adaptive Feature Enhancement 
(AFE) module is designed to improve both the capacity of representation at the highest level of the feature map 
and feature representation ability and help distinguish between coconut trees and other vegetation. Secondly, we 
modify a region proposal network to produce a Tree-shape Region Proposal Network (T-RPN) for producing 
coconut tree candidates. Finally, we create a Cross Scale Fusion (CSF) module for integrating multi-scale in-
formation to improve small tree detection; this fuses features of coconut crowns from different levels, connecting 
shallow and deep-level semantic features. 

We applied COCODET to detect coconut trees in four remote atolls from the Acteon Group in French Polynesia. 
The natural habitats on the islands were previously cleared for coconut plantations, many of which have since 
been abandoned. COCODET achieved an average F1 score of 86.5% using its real-time inference process, 
considerably outperforming other cutting-edge object detection algorithms (4.3 ~ 12.0% more accurate). We 
detected 688 ha of coconuts and 182 ha of natural habitat on the islands, and within the coconut groves we 
detected 120,237 individuals. Our analyses indicate that deep learning approaches can be successfully applied to 
coconut palm detection, aiding efforts to understand human impacts on natural ecosystems and biodiversity.   

1. Introduction 

Coconut palm (Cocos nucifera L.) is among the world’s most 
economically important tree species (Kappally et al., 2015). The palms 
are prominent on tropical islands (de Souza and Falcão, 2022) and other 

coastal regions. Coconut is one of the most versatile products in many 
tropical developing countries and has diverse uses as a vegetable oil, and 
as a component of food, fuel, medicine, carpets, building materials, and 
peat substitute. It is a significant source of revenue in many tropical 
coastal regions (Abankwah et al., 2010; Danso, 2017). However, the 
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expansion of coconut plantations to meet global demand is having 
serious consequences for biodiversity (Lathika and Ajith Kumar, 2005). 
According to Meijaard et al. (2020), to some extent, coconut plantations 
are more destructive than olive and oil palm plantations, with coconuts 
affecting 20 threatened species per million liters of oil produced, yet 
olive and palm oil only affecting 4.1 and 3.8 species per million liters, 
respectively. 

While new plantations threaten wildlife, the management of old 
abandoned coconut groves is key for biodiversity protection on many 
islands (Pierce and Blanvillain, 2004). For example, the Ackeon Group 
of atolls in French Polynesia in the Pacific Ocean (Fig. 5) is home to 
several threatened and near-threatened bird species (Pierce and Blan-
villain, 2004; Griffiths et al., 2008, 2011; Pott et al., 2014). Abandoned 
coconut plantations dominate the atolls, alongside remnants of rela-
tively unmodified vegetation, such as the groves of pandanus (Pandanus 
tectorius) and mikimiki (Pemphis acidula). The abandoned plantations 
provide a vital habitat for many endangered bird species including the 
Polynesian ground-dove (Gallicolumba erythroptera) and Tuamotu 
sandpiper (Prosobonia cancellata) but also provide safe havens for Pacific 
rats (particularly black rat (Rattus rattus)) and cats (Felis catus) that eat 
the eggs of these birds (Griffiths et al., 2008). To this end, surveying 
coconut trees in these remote atolls of the Pacific Ocean is crucial to 
understand the habitats and environments of threatened bird species. 
(See Fig. 1.) 

Remote surveying of individual trees to provide accurate informa-
tion on locations and densities has many applications in forestry, food 
production and ecological assessments, and is already used to map co-
conuts (Rahnemoonfar and Sheppard, 2017). Rapid advances in high- 
resolution remote sensing from drones, aircraft and space alongside 
the development of new computational approaches have made it 
possible to automatically detect tree crowns from optical imagery 
(Hansen et al., 2013; Crowther et al., 2015; Brandt et al., 2018; Payne, 
2021), and these approaches are now routinely used to estimate forest 
biomass, monitor environmental change and predict yields (Chong et al., 
2017). Tree crown detection using high-resolution images has mostly 
been based on traditional image processing (Skurikhin et al., 2013; Xu 
et al., 2021b) or classical machine learning-based approaches (Selvaraj 
et al., 2020; Gleason and Im, 2012). More recently deep learning based 
methods have been used, including image classification-based method 
(Li et al., 2017; Zheng et al., 2020), semantic segmentation-based 
method (Osco et al., 2020; Zhang et al., 2020) and object detection- 
based method (Zheng et al., 2021a; Lumnitz et al., 2021). Deep 
learning has a greater capacity to extract feature and represent texture 
than previous image processing methods, often improving the accuracy 
and robustness. 

Several algorithms have been developed specifically to recognize 
individual coconut trees (see Table 1). Most of existing algorithms are 

based on classical machine learning (Teina et al., 2008; Puttemans et al., 
2018; Upendra et al., 2019; de Souza and Falcão, 2022), and image 
classification-based method (Vargas-Munoz et al., 2019) (see Table 1). 
For instance, Vermote et al. (2020) estimate the number of coconut trees 
in Tonga using the WorldView-3 images. Vargas-Munoz et al. (2019) 
argue that CNN classification is a feasible alternative for detecting palm 
trees as objects with high average accuracy in UAV imagery. However, 
these methods attain high accuracy, but use time-consuming sliding 
window technique that makes them inefficient when applied over large 
scales. As shown in the top line of Fig. 2, the sliding window technique 
requires a relatively large number of detected candidates of various 
sizes, splitting the entire image into many image patches with a specific 
window size and then classifying them as the background (other land 
cover types) or the tree crown through different CNN architectures. 
Furthermore, these methods are ineffective in detecting coconut palms 
of different crown sizes because the size of the image patch is predefined 
(Zheng et al., 2021a). Current studies have mapped no >30,000 trees, 
because of these limitations (see the number of detected trees in 
Table 1). 

On the other hand, object detection-based approach is an end-to-end 
detection framework that aims to provide all detected objects for the 
whole image simultaneously (see the bottom line of Fig. 2), without 
timeconsuming sliding window technique and post-processing. Faster R- 
CNN is one of the most popular object detection-based approaches and 
have been applied in many tree crown detection applications (Zheng 
et al., 2021b). In general, the object detection-based approach is faster 
and more robust than for other types of tree crown detection methods, 
efficiently alleviating the performance drop caused by complex topog-
raphy, confusion with other vegetation, etc. Up to now, only our pre-
vious work (Zheng et al., 2021b) adopts end-to-end detection framework 
with a high efficiency to achieve real-time coconut detection. 

Deep learning has been successfully applied to detect objects such as 
ships (Liu et al., 2021; Zhang et al., 2021b), buildings (Li et al., 2019; 
Zhang et al., 2021a) and trees (Li et al., 2017; Hao et al., 2021), etc.). 
However, existing deep learning-based tree crown detection methods do 
not consider the characteristics of tree crowns in remote sensing images, 
and instead directly adopt common object detection frameworks. 
Detecting trees from high-resolution satellite imagery is challenging, 
because each tree is coarsely pixelated in the imagery, and densely 
packed canopies make it difficult to distinguish individuals. This makes 
tree detection distinct from other object detection tasks, such as 
detecting cats or dogs from photographs in the COCO dataset, where 
each object comprises thousands of pixels. Fig. 3 displays comparison of 
the complexity and difficulty in object size and density between a 
common object detection problem in the COCO dataset and a tree 
detection problem in remote sensing images (such as coconut trees and 
oil palm trees). Current deep learning approaches to tree-crown delin-
eation adopt convolutional networks directly, without considering the 
coarse pixelation problem (see Table 1). As network architectures 
become deeper, the features of small trees may rarely appear in the 
deepest layers, leading to negative learning of tree crowns. Our previous 
work (Zheng et al., 2021b) adopted Faster R-CNN (Ren et al., 2016) and 
FPN (Lin et al., 2017) to complete coconut tree detection in Tenarunga, 
and achieved an F1 score of 77.1%, which is relatively poor (see 
Table 1). In this study, we further improve the algorithm to better detect 
small and dense tree crowns from remote sensing images (see Fig. 3) and 
expand our study area to include the whole Acteon Group in the Pacific 
Ocean. Therefore, our COCODET is much more effective and computa-
tionally efficient than existing coconut tree detection applications, 
making it possible to apply the algorithm over large spatial scales in real 
time. This paper makes the following contributions: 

(1) We manually locate 120,237 coconut trees in French Polynesia 
from remote sensing images and those data with the codes are published 
on https://github.com/rs-dl/coconut_in_Acteon_Group. This is the 
largest available dataset of this sort for coconut trees. 

(2) We present a high-accuracy, highly-efficient, real-time COCOnut 
Fig. 1. The number of species threatened by each oil crop per million tons of oil 
produced (Meijaard et al., 2020). 
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tree DETection method (COCODET). Our method includes three mod-
ules to solve the small-object problem where coconut stands are usually 
densely packed and individual trees: an Adaptive Feature Enhancement 
(AFE) module, a Tree-shape Region Proposal Network (T-RPN) and a 
Cross Scale Fusion module (CSF). These three novelties in COCODET are 
proposed to address limitations in existing methods for detecting small 

and dense tree crowns from remote sensing images, which are really 
important in remote sensing object detection domain. 

(3) We conduct a thorough survey of coconut trees for four remote 
atolls (Tenararo, Vahanga, Tenarunga and Matureivavao) in the Acteon 
Group from high-resolution satellite images. Our approach achieves an 
average F1 score of 86.5%, outperforming other cutting-edge object 

Table 1 
Summary of existing coconut tree detection studies.  

Publications Study site No. trees Imagery Method F1 score End-to-end 

Teina et al. (2008) Tuamotu Archipelago 4133 IKONOS SVM 69.1%|| ×

Puttemans et al. (2018) -* 3798 Aerial images Boosted Cascades 85.6% ×

Upendra et al. (2019) Sri Lanka – UAV images Template matching 90.0%|| ×

Vargas-Munoz et al. (2019) Kingdom of Tonga 3144 8 cm UAV images AlexNet 84.1% ×

Mohan et al. (2019) Rio de Janeiro, Brazil 341 Lidar point clouds adaptive TWS† approach 90.0% ×

Vermote et al. (2020) Kingdom of Tonga 8926 WorldView-3 Shadow detection 93.0%|| ×

Zheng et al. (2021b) Tenarunga 28,838 Google Earth Faster R-CNN + FPN 77.1% √ 
de Souza and Falcão (2022) Kingdom of Tonga 10,268 8 cm UAV images FLIM+MLP# 85.4% ×

This study French Polynesia 120,573 Google Earth COCODET 86.5% √  

* Unreported and unavailable values are labeled as’-’. †TWS denotes treetop window size. 
# FLIM denotes feature learning from image markers; MLP denotes multilayer perceptron. 
|| denotes the publication reports the detection results with accuracy. 

Fig. 2. Comparisons between sliding window-based detection framework (top line) and end-to-end-based detection framework (bottom line).  

COCO

Fig. 3. Comparison of complexity and difficulty in object size and density between a common object detection problem in COCO dataset and a tree detection problem 
in remote sensing images (such as coconut trees and oil palm trees). 
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detection algorithms (by 4.3 ~ 12.0%). 
(4) We provide more specific information on how coconut plantation 

can effect wildlife biodiversity, including their positive and negative 
impacts. We find that the Tenararo has much more amount of threatened 
bird species than the other three atolls, with the highest density and 
canopy area of the coconut plantations, which prove that the importance 
of coconut plantations for these endangered bird species. 

In Sec.2 we briefly summarise previous work on Individual Tree 
Crown Detection (ITCD) domain, then present our proposed COCODET 
in Sec. 3. We introduce our study area, and demonstrate COCODET’s 
performance in Sec. 4. After that, we discuss how coconut tree detection 
helps understand the ecological functions of coconut trees in the Acteon 
Group (Sec. 5). Finally, we conclude this paper in Sec. 6. 

2. Overview of individual tree crown detection methods 

Classical approaches to individual tree crown detection (see (Skur-
ikhin et al., 2013; Hung et al., 2012)) use pattern recognition algorithms 
to extract handcrafted tree crown-like features, such as local maximum 
filtering (Xu et al., 2021b; Gebreslasie et al., 2011; Zheng et al., 2022b), 
image binarization (Koc-San et al., 2018; Pitkänen, 2001), image seg-
mentation (Gougeon and Leckie, 2006; Santoso et al., 2016; Miraki 
et al., 2021), and template matching (Hung et al., 2012; Leckie et al., 
2016; Norzaki and Tahar, 2019). Some researches prove that combining 
two or more methods may perform better ITCD results (Heenkenda 
et al., 2015) to achieve detecting and delineating tree crowns. For 
instance, Pitkänen (2001) combines locally adaptive binarization and 
local maximum filtering methods to achieve individual tree detection in 
digital aerial images, with 70 ~ 95% of the trees were detected in sparse 
regions. Panagiotidis et al. (2017) combine local maximum filtering and 
inverse watershed segmentation to estimate crown diameters, achieving 
an acceptable accuracy for detecting tree crown diameter. Software 
tools are available for some classical approaches (Gebreslasie et al., 
2011; Santoso et al., 2016) but their utility is limited by the need to tune 
many parameters and their lack of generality (Pitkänen, 2001). Many 
algorithms achieve high accuracy in sparse and simple regions, while 
have severe accuracy deterioration in dense and complex regions 
(Pitkänen, 2001). 

Older machine learning methods have two components: feature 
extraction and classifier training. Extracted features can be generated 
through non-handcrafted methods, such as spectral information, vege-
tation indices such as Normalized Difference Vegetation Index, NDVI 
(Ouma and Tateishi, 2008) and texture characteristics (such as Gray- 
Level Co-occurrence Matrix, GLCM) (Pu and Landry, 2012), or can be 
handcrafted using methods including Histogram of Oriented Gradient 
(HOG) (Wang et al., 2019b) and Scale-Invariant Feature Transform 
(SIFT) (Malek et al., 2014). Popular adopted classifier contains decision 
tree (Ouma and Tateishi, 2008; Tochon et al., 2015), random forest 
(Selvaraj et al., 2020; Wallace et al., 2021) and Multi-Layer Perceptron 
(MLP) (Nevalainen et al., 2017), etc. Nevalainen et al. (2017) compare 
ITCD performance of 5 different classifiers including k-NN, Bayes clas-
sifier, decision tree, MLP and random forest. They build a high- 
resolution dataset based on hyperspectral and point cloud data, and 
extract about 350 features. Experimental results indicate that MLP 
achieves the best accuracy, followed by k-NN, random forest, decision 
tree and Bayes classifier. The generality of these older machine learning 
methods is stronger (Dalponte et al., 2014) but selecting suitable fea-
tures for these methods is time consuming (Nevalainen et al., 2017) and 
performance is dependent on the quality of manually interpreted 
samples. 

Many researchers have developed algorithms based on deep learning 
framework (LeCun et al., 2015), which can be used in large-scale ap-
plications with complex contexts to obtain good results. Deep learning of 
individual tree crowns has developed rapidly (Zheng et al., 2022a). 
Methods fall into three categories: (a) image classification (Guirado 
et al., 2017) using LeNet (Li et al., 2017; Wu et al., 2020b), AlexNet 

(Zheng et al., 2020; Nguyen et al., 2021), VGG (Safonova et al., 2019; de 
Souza and Falcão, 2022), and ResNet (Onishi and Ise, 2021); (b) Se-
mantic Segmentation (Gurumurthy et al., 2019; Zhang et al., 2020) 
using DeepLabV3+ (Gibril et al., 2021), U-Net (Brandt et al., 2020) and 
Fully Connected Networks (Gurumurthy et al., 2019; Osco et al., 2021); 
and (c) Object Detection (Wu et al., 2020a) using Faster R-CNN (Zheng 
et al., 2019; Pearse et al., 2020), Mask R-CNN (Hao et al., 2021; Lumnitz 
et al., 2021), YOLO (Ampatzidis et al., 2019; Itakura and Hosoi, 2020; 
Yuan et al., 2022), and RetineNet (Selvaraj et al., 2020; Weinstein et al., 
2020b). Image classification-based approach is the earliest method in 
deep learning based individual tree crown detection methods and pro-
posed in Li et al. (2017), which requires to cooperate the sliding-window 
technique. Many scholars design new CNN architectures to improve the 
performance of individual tree crown detection. For example, Dong 
et al. (2019) propose a progressive cascaded CNN to effectively alleviate 
wrong detected trees and missing trees in the scene of a complex forest 
because of unclear canopy contours and abnormal shapes. Their model 
attains 3.9 ~ 11% improvement in three study areas located in China, 
Thailand and America. Dissimilar with the image classification-based 
approaches that produce one label for a patch of an image, semantic 
segmentation-based methods aim at generating dense classes for each 
pixel in the whole image. Some papers propose a modified semantic 
segmentation model to individual tree crown detection applications. For 
instance, Zhang et al. (2020) integrate a set of residual U-Nets and a 
sequence of automatically derived input scales to introduce a new scale 
sequence residual U-Net-based deep learning algorithm, which is able to 
complete self-adaption to variations in different kinds of trees, consis-
tently attaining the highest detection accuracy (91.67% on average) 
compared with the other four state-of-the-art individual tree crown 
detectionrelated approaches. Object detection-based algorithms consist 
with the mechanism of the human brain, firstly giving a coarse scan of 
the whole image and then focusing on areas of interest. They are highly 
popular in the individual tree crown detection domain with an end-to- 
end detection framework and high-efficiency, and they contain several 
correlated stages, such as generating region proposals, CNN based 
feature extraction, bounding box regression, and classification. For 
example, Weinstein et al. (2020a) develop a new python package, 
DeepForest, to detect individual tree crowns through high resolution 
remote sensing images using object detection based deep learning 
approach. This package makes the procedures of retraining and utilizing 
deep learning algorithms more easier for a range of spatial resolutions, 
sensors and forests. Furthermore, Zheng et al. (2021a) compare different 
object detection-based algorithms, including Faster R-CNN (Ren et al., 
2016), GRID R-CNN (Lu et al., 2019), GA Faster R-CNN (Wang et al., 
2019a), Cascade R-CNN (Cai and Vasconcelos, 2019), Libra R-CNN 
(Pang et al., 2019) and their proposed MOPAD. Experimental results 
show that MOPAD outperforms other state-of-the-art object detection- 
based methods by a margin of 8.14 ~ 21.32% with respect to the 
average F1 score for multi-class oil palm detection. 

However, image classification-based approaches are relatively time- 
consuming and computationally inefficient due to the adoption of a 
sliding window approach, particularly when detecting trees of different 
crown sizes (see Fig. 2). Semantic segmentation-based methods, on the 
other hand, perform poorly in regions where trees overlap, resulting in 
the recognition of numerous overlapping or touching trees as a single 
tree. To construct the final outlines of individual trees, a variety of post- 
processing processes, such as local maximum detection (Osco et al., 
2020), or exclusion of certain objects (Brandt et al., 2020) is frequently 
required. Generally, the object detection-based algorithms are more 
efficient and more accurate than existing individual tree crown detec-
tion algorithms, eliminating performance reduction caused by difficult 
terrain and confusion among plant types. 

As shown in Table 1, existing coconut tree detection mainly adopted 
sliding-window technique to achieve coconut tree counting in a picture, 
which is quite time-consuming. Here we use deep learning object 
detection-based approaches to recognize coconut trees, which is an end- 
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to-end detection framework (see Fig. 2). In addition, most existing al-
gorithms use widely available deep learning algorithms without 
considering their effectiveness in addressing the coarse pixelation 
problem. However, In this paper, we design a new ITCD methods named 
COCODET that greatly improves the representation of small tree crowns 
in deep layers by integrating the information of the candidates in low- 
and high-level features and providing context semantic information, 
showing that its effectiveness at coconut tree detection. We think that 
our novelties in COCODET are quite meaningful in ITCD domain, 
dealing with the challenges of detecting small and dense tree crowns 
from remote sensing images using deep learning-based architecture. 

3. COCODET: a coconut tree detection approach 

Our method is derived from Faster R-CNN (Ren et al., 2016), a basic 
and popular object detection method. It works by fusing different level 
features of coconut tree crowns and thereby improving the performance 
by providing connections between shallow and deep-level semantic 
features. COCODET has two feature recognition components and a 
fusion component (Fig. 5): 

(1) An Adaptive Feature Enhancement module (AFE) for 
improving the capacity of representation at the highest level of the 
feature map. Our AFE module has three steps, including multi-scale 
adaptive pooling, high-level feature enhancement layer and Cross 
Scale Fusion (CSF). Specifically, improving the feature representation 
ability at the highest level of the feature map contributes to dis-
tinguishing between coconut trees and other tree species or vegetation. 

(2) A Tree-shape Region Proposal Network module (T-RPN) to 
find prospects for coconut trees. In contrast to common object detection 
tasks, we produce region proposals using an end-to-end structure with 
an aspect ratio of {1: 1} in all levels of features in accordance with the 
size of a coconut tree crown. Then we generate feature vectors with fixed 
sizes for all region proposals using a Region of Interest (RoI) pooling 
layer. 

(3) A Cross Scale Fusion module (CSF) for integrating multi-scale 
information to improve the performance of detecting small coconut 
tree crowns. Our CSF consists of two convolutional layers and a Sigmoid 
layer to generate a spatial attention map, effecting both after the high- 
level feature enhancement layer in the AFE module and the RoI pool-
ing layer in the T-RPN module. 

By integrating the information of the candidates in low- and high- 

level features, we greatly improve the detection of small objects such 
as coconut crowns by provide context semantic information. We believe 
that these three components in COCODET are really important in the 
tree crown detection domain, addressing the bottleneck of detecting 
small and dense tree crowns in remote sensing images using deep 
learning-based architecture. 

3.1. An adaptive feature enhancement (AFE) module 

Our backbone is the Residual Network (ResNet) (He et al., 2016), 
which constructs multiple residual modules in layers, addressing the 
gradient vanishing problem and degeneration problem in deep neural 
networks. As Fig. 4 shows, Residual Network allows us to get four 
distinct scales of feature maps, and we define them as {F1, F2, F3, F4}, 
where Fl means the feature map at resolution level l. In Feature Pyramid 
Network (Lin et al., 2017), {L1, L2, L3, L4} represent features with 
reduced channels, which are lateral connections for {P1, P2, P3, P4}. 

In a Feature Pyramid Network (FPN), feature maps of {P1, P2, P3} is 
produced through a top-down path and fused with the feature maps at 
lower levels {L2, L3, L4} gradually. However, the highest level P4 is only 
produced through itself without other fusion of other level features, 
suffering from the information loss. As the higher level features perform 
stronger semantic representations for a larger region, which means they 
have larger receptive field in images. For example, higher level features 
are better at distinguishing coconut tree plantations and other similar or 
complex context (such as other vegetation, bare land, etc.) in a larger 
area. To this end, we design an Adaptive Feature Enhancement (AFE) 
module (see Fig. 4(b)) to enhance the representation of the highest level 
P4. 

Our AFE module has three steps. At first, we generate multiple 
context features in our AFE module, with different scales of {r1, r2, r3} by 
conducting multi-scale and ratio-invariant adaptive pooling on F4. 
Subsequently, each context feature independently undergoes a high- 
level feature enhancement layer, which unifies the feature channel 
dimension by a 1 × 1 convolutional layer. Finally, we design a Cross 
Scale Fusion (CSF) module (see detailed in Section 3.3) to generate one 
spatial weight map for each context feature and alleviate the aliasing 
effect caused by interpolation. CSF combines these feature representa-
tions in an adaptive fusion way instead of a direct summation. More 
details can be found in Section 3.3. To this end, we produce a higher 
feature level of L5, which is used to propagated to other lower features. 

Fig. 4. The framework of the proposed coconut tree detection method - (a) COCODET - includes three modules: (b) An Adaptive Feature Enhancement (AFE) module 
for improving the capacity of feature representation at the highest level of feature map; (c) a Tree-shape Region Proposal Network (T-RPN) for producing coconut tree 
candidates; (d) A Cross Scale Fusion (CSF) module for integrating information for multi-scale features, both after the high-level feature enhancement layer in AFE 
module and the Region of Interest (RoI) pooling layer in T-RPN module. 
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Therefore, the highest level P4 can be produced through a top-down path 
and fused with the feature map of L5, acquiring more spatial and context 
information. Our AFE module improves the feature representation 
ability at the highest level of feature map, contributing to a better 
distinction between coconut trees and other tree species or vegetation. 

3.2. A Tree-shape Region Proposal Network (T-RPN) 

Region Proposal Network (RPN) is widely used in object detection 
algorithms and applications to generate and filter bounding box candi-
dates, after Faster R-CNN employs this sub-network (Ren et al., 2016), 
recognizing on the feature maps and instructing the unified network 
where to look. In the vanilla Faster R-CNN, RPN generates candidates 
only based on a dense n × n (pixels) sliding window on the last feature 
map. Here, we use four feature levels (i.e., P1, P2, P3, P4) as the input 
feature map, and apply the same sliding window to all levels of these 
features. Following that, using the same approach, Region of Interest 
(RoI) pooling layer, as the vanilla Faster R-CNN, we use two fully con-
nected (FC) layers for classification and bounding box regression, 
respectively. Notably, the purpose of the RoI pooling layer is to perform 
max pooling of inputs of nonuniform sizes to obtain fixed-size feature 
maps, which is convenient to uniformly process different candidates in 
the following operators. A fully connected layer multiplies the input by a 
weight matrix and then adds a bias vector, compiling the image 
extracted by previous layers to form the final output. 

The original anchor sizes in the vanilla Faster R-CNN for the last 
feature map are {1282, 2562, 5122} and the aspect ratios are {1: 2, 1: 1, 
2: 1}. In COCODET, we employ a specific tree-shape anchor size for the 
level of features after the AFE. With regard to the shape of each coconut 
tree in the satellite image, we set the anchors sizes of {322, 642, 1282, 
2562} pixels on {P1, P2, P3, P4}, respectively. When considering the 
shape of coconut trees, we just assign {1: 1} at each level as the aspect 
ratio. Furthermore, because fewer anchors are created, coconut candi-
date generation strategy in T-RPN speeds up both the training and 
reference processes. 

3.3. A Cross Scale Fusion (CSF) module 

After T-RPN (see Sec. 3.2), we generate a series coconut tree crown 
candidates from four different feature levels of the same size. Although 
the original FPN (Lin et al., 2017) (see Fig. 4(a)) fused low-level and 
highlevel features {P1, P2, P3, P4}, it still focused on their own level 
features. If we integrate the information of the candidates in low-level 
features (such as P1) with the information of the candidates in high- 
level features (such as P4), it significantly benefits the detection of 
small objects such as coconut crowns with more abundant context se-
mantic information. To deal with this issue, the Path Aggregation 
Network (PANet) (Liu et al., 2018) adopts an adaptive feature pooling to 
refine the proposals from all pyramid levels’ features, and utilize Fully 
Connected (FC) layers with a maximum or a summation. On the other 
hand, other studies (Hu et al., 2018; Guo et al., 2020) adopts global max 
pooling or global average pooling before fusing candidates from multi- 
level features. However, these methods inevitably to suffer from time- 
consuming FC layers and information-loss pooling layers. 

Therefore, we design a Cross Scale Fusion (CSF) module, fusing 
multi-scale candidates (acquired from Sec. 3.2) from different level 
features without parameters-increasing FC layers (Liu et al., 2018). Our 
CSF first concatenates high- and low-level features, followed by two 
convolutional layers. After that, it undergoes a sigmoid layer to generate 
spatial weight maps for Region of Interest (RoI) outputs from multi-scale 
levels. The sigmoid layer applies a sigmoid function to the input such 
that the output is bounded, which is similar to the perceptron and much 
smoother than the step function in the perceptron. Finally, the spatial 
weight maps conduct a Hadamard product with concatenated candi-
dates from different levels. Notably, the Hadamard product is a binary 
operation that takes two matrices of the same dimensions and produces 

another matrix of the same dimension as the operands. To this end, the 
CSF learns to produce more representative candidates from multi-scale 
feature levels, especially improving the performance of detecting small 
coconut tree crowns by connecting the shallow and deep level context 
semantic features. Furthermore, this CSF module is also a component in 
the AFE module (see Sec. 3.1) to adaptively fuse multi-scale features 
generated from C4 and acquire an enhanced feature M5 (see Fig. 4(c)). 

Overall, the final loss function of our COCODET can be formulated as 
Eq. (1), including classification loss (Lcls) and localization loss (Lloc). 

LCOCODET =
∑4

P=1

(
Lcls,P(p, t*)+ β[t* > 0]Lloc,P(d, b*)

)
(1)  

in which β is the trade-off weight to balance the classification and 
localization of the bounding-box loss. We utilize softmax cross-entropy 
loss for classification loss and Smooth L1 loss for bounding-box regres-
sion loss (Ren et al., 2016). t* and b* are the true values of class labels 
and bounding-boxes, respectively. p and d are the classification and 
regression predictions for the final pyramid layers ({P1, P2, P3, P4}), 
respectively. 

3.4. Large-scale coconut tree detection process 

We apply our proposed COCODET on the coconut tree crown 
detection in four remote atolls in the Acteon Group of the Pacific Ocean 
for large-scale testing. As we train the model using sub-images of 512 ×
512 pixels, we crop the large-scale image into small patches to match the 
training model and achieve high-speed prediction when implementing 
the large-scale test. In addition, we utilize an overlapping strategy for 
largescale applications. Each of the two neighboring sub-images own an 
overlapping area of 100 × 100 pixels to make sure every coconut tree in 
images is complete and no corners are left ignored, rather than directly 
cropping into several 512 × 512 sub-images. To obtain the final detec-
tion results, we conduct an Intersection-of-Union (IoU) based merging 
procedure after each patch’s coconut tree detection. IoU based merging 
procedure overcomes the mis-detection, incorrect detection of coconut 
tree crowns in large-scale applications, and it prevents any duplication 
problems. Furthermore, we draw the land contours for these isolated 
atolls and drop the discovered coconuts into the ocean automatically. 

4. Experiments and evaluation 

4.1. Site and data description 

4.1.1. Site description 
Our study area is the Acteon Group (Groupe Act’eon) in French Pol-

ynesia, which is about 1400 km east-southeast from Tahiti. They form 
part of the Windward group of Society Islands, and are isolated and 
uninhabited atolls. The first European to sight the Acteon Group was 
Pedro Ferńandez de Quiŕos on 5 February 1605. He described the group 
as “four atolls crowned by coconut palms” (Nowell, 1968). They were 
more thoroughly explored by Thomas Ebrill, captain of the Tahitian 
trading vessel Amphitrite, in 1833. 

Two of the four atolls in this group - Tenararo and Vahanga - are 
recognized as a Key Biodiversity Area and proposed as an Important Bird 
Area (Griffiths et al., 2011). Threatened endemics include two endan-
gered birds identified as priorities for species-specific investment: the 
Polynesian ground dove (Gallicolumba erythroptera) and the Tuamotu 
sandpiper (Prosobonia cancellata) (Griffiths et al., 2008; Curlew, 2014). 
Other native threatened species present in the Ackeon Group include 
atoll fruit-dove (Ptilinopus coralensis), Murphy’s petrel (Pterodroma ul-
tima), bristle-thighed curlew (Numenius tahitiensis) and green turtle 
(Chelonia mydas) van der Vliet and Ghestemme (2013); Pierce et al. 
(2015); Veitch et al. (2019). 

The Acteon Group have four main atolls: Tenararo, Vahanga, 
Tenarunga and Matureivavao (see Table 2). Tenararo is the smallest 
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atoll in the Acteon with only 700 ha of total area and there is no entrance 
to the lagoon. This atoll has a landing place on its northwest side be-
tween the small boulders which encumber the reef (Moulin, 1866). 
Vahanga is a circular atoll with a diameter of 3.6 km and a land area of 
382 ha (including a 1258 ha lagoon). It is a low atoll with a landing place 
on the northwest side of the island near a white house, but there is no 
access to the lagoon (DATA, 2006). Tenarunga is located 8 km east of 

Vahanga, with a land area of 425 ha and a total area of 1349 ha (lagoon 
inclusive). There are some buildings and a dock located on the north- 
east side of this island, indicating former or seasonal habitation (Dahl, 
1986; Quanchi and Robson, 2005). Matureivavao is the largest atoll, 
with a land area of 396 ha and a lagoon area of 2466 ha (Young, 1899). 

Coconut dominate the islands, with other vegetation types including 
grasslands, flooded vegetation and shrubland occupying only 15% of the 
land (see Karra et al. (2021)). As natural components of the vegetation, 
coconuts can be beneficial for wildlife: fruits and insect larvae in rotting 
coconut fruits are important foods for Tutururu; tall coconut trees pro-
vide refuge for birds and may afford some protection against tropical 
cyclones (Blanvillain et al., 2002). On the other hand, the common 
practise of clearing native undergrowth beneath mature coconut stands 
depletes the Tuamotu Sandpiper habitat (Pierce and Blanvillain, 2004) 
threatening this and other bird species. Another threat to wildlife are the 
mammals introduced to all the atolls except Tenararo (Blanvillain, 2000; 
Blanvillain et al., 2002), including Pacific and Black rats, and some cats 
in Tenarunga (Brooke et al., 2007). 

4.1.2. Data description 
Four DigitalGlobe satellite photos were obtained from Google Earth 

with 0.6 m spatial resolution and three spectral bands (red, green and 

Table 2 
Summary statistics four atoll comprising the Acteon Group (from (Griffiths et al., 
2008)).  

Index Tenararo Vahanga Tenarunga Matureivavao 

Total area (including 
reef and lagoon 
area; ha) 

700 1258 1349 2862 

Land area (including 
vegetation area; ha) 

272 382 425 396 

Vegetation area 
(percentage of total 
land area; ha) 

106 
(39%) 

115 
(30%) 

136 (32%) 55 (14%) 

Distance from the 
Vahanga (km) 

7 – 8 17  

Fig. 5. The location of the Acteon Group and its four atolls, named Tenararo, Vahanga, Tenarunga and Matureivavao. We also point out our training areas (green 
squares) and validation areas (blue squares) where we have manually annotated all coconut trees (red points). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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blue). We train our model using eight training regions (denoted by the 
green squares, two zones for each atoll, see Fig. 5) and validate the 
model using eight validation regions (denoted by blue rectangles, two 
zones for each atoll, see Fig. 5) during training procedures. We report 
the model’s performance in the test region, which is the whole area of 
four atolls in the Actoen Group. Notably, the area of the training set or 
validation set accounted for <1.7% of the total area of the test region. 
Although the training set and validation set are included in the large- 
scale test set, it is reasonable and suitable to report our results in the 
test region, which is the same as other large-scale deep learning appli-
cations (Brandt et al., 2020). 

To this end, we chose two training zones (the green squares in Fig. 5) 
for each atoll with 3000 × 3000 pixels, and two regions as validation 
regions (the blue squares in Fig. 5) with 3000 × 3000 pixels. All coconut 
trees in our training and validation regions were labeled manually (red 
points in the last row of Fig. 5). We generated a training dataset of 2000 
photos by randomly cropping each training image with 512 × 512 pixels 
and feeding it into deep neural networks (each training region generates 
50 images and we adopt four data augmentation strategies including 
horizontal flipping, vertical flipping, random cropping and noise addi-
tion). We also arbitrarily trimmed the validation dataset with 512 × 512 
pixels, and there were 200 validation photos in total (each validation 
generated 50 images). For the test dataset, we adopt an overlapping 
partition approach for the whole satellite image shown in Fig. 5 (see 
detailed information in Section 3.4). 

4.2. Performance of COCODET 

The performance of COCODET for coconut tree crown detection is 
tested using field observations (Section 4.2.1). We show the detection 
results of COCODET in Section 4.2.2. Providing deep insights, we 
conduct comprehensive ablation studies and compare our results with 
other state-of-the-art (SOTA) object detection algorithms in Section 
4.2.3 and Section 4.2.4. 

4.2.1. Settings and evaluation 
We employ the MMdetection as our experiment conduction deep 

learning framework (Chen et al., 2019), and we predefine the hyper- 
parameter (introduced in Eq. 1) as 1 throughout all experiments (Ren 
et al., 2016). We use GeForce RTX 2080 Ti to train our model and the 
training epoch is 24. The backbone we choose for all the algorithms in 
the comparative work is ResNet-101 for a fair comparison. Stochastic 
Gradient Descent (SGD) is chosen as our optimizer and we also use a 
momentum of 0.9. The initial learning rate is set as 0.01 and it decreases 
by a ratio of 0.1 after the 12th and 16th epoch, respectively. The values 
of {r1, r2, r3} are set as {0.1, 0.2, 0.3}. The other hyper-parameters in 
our experiments are the same with the default settings in MMdetection. 

Precision, recall, and F1 score are included in the assessment metrics. 
Precision measures the model’s ability to properly recognize coconut 
trees, whereas recall measures its ability to locate ground-truth coconut 
plants. The F1 score represents the model’s overall performance. 
Aforementioned metric can be formulated from True Positives (TP), 
False Positives (FP) and False Negatives (FN) as Eq. 2. TP means how 
many coconut trees that are detected correctly; FP means the number of 
others recognized as coconut trees by mistake; FN means how many 
coconut trees that are mis-detected. If the IoU metric value between the 
detected tree and the corresponding ground truth is equal to or >0.7 (see 
Sec. 4.2.4), the coconut tree may be considered as a correctly detected 
target. 

precision =
TP

TP + FP  

recall =
TP

TP + FN
(2)  

F1 score =
2 × precision × recall

precision + recall  

4.2.2. Results 
We used our proposed COCOnut tree DETection algorithm (COCO-

DET) to provide a wall-to-wall map of coconut trees across the four 
abandoned atolls (see Sec. 3). We selected training regions on each atoll 
with a total area of 36 ha and test the whole atoll to evaluate the ac-
curacy of coconut tree detection. Table 3 lists the six indices (i.e., TP, FP, 
FN, precision, recall and F1 score) for four remote atolls in the Acteon 
Group. COCODET achieves an average F1 score of 86.46%, with 82.56 
~ 89.19%. The performance of the Tenararo is better than that of other 
atolls, with 0.81 ~ 8.27% increase in the F1 score. The explanation for 
this might be that Tenararo has the most coconut trees per unit of land 
area, which helps to minimize misunderstandings between coconut trees 
and other land cover categories (see Table 2). Fig. 6 illustrates some 
cases of FP (on the left) and FN (on the right). We can observe that tree 
shadows or other vegetation might be recognized as coconut trees 
falsely. Also, some FPs may results from the overlapping between two 
coconut tree crowns or dissatisfaction with the specific IoU metric (see 
Fig. 6(a)). As for FN, it is primarily contributed from covering by other 
tree crowns or vegetation, which is owing to the low quality of satellite 
images or the small size of the coconut tree crown (see Fig. 6(b)). 

4.2.3. Results comparison between our proposed COCODET and other 
State-Of-The-Art (SOTA) 

Comparison of our method with seven different cutting-edge object 
detection methods, including RepPoints (Yang et al., 2019), Faster R- 
CNN (Ren et al., 2016), Libra Faster R-CNN (Pang et al., 2019), Guided 
Anchoring (GA) Faster R-CNN (Wang et al., 2019a), RetinaNet (Lin 
et al., 2018), Cascade R-CNN (Cai and Vasconcelos, 2019) and Grid R- 
CNN (Lu et al., 2019), MOPAD (Zheng et al., 2021a), Sparse R-CNN (Sun 
et al., 2021) and PTDM (Yuan et al., 2022). Faster R-CNN (Ren et al., 
2016) is a fundamental object detection approach of our proposed 
COCODET and has been used in various tree crown detection studies 
(Pearse et al., 2020; Zheng et al., 2021a). RepPoints (Yang et al., 2019) 
learns to arrange ground truth localization and recognition targets 
automatically through bounding an object’s spatial extent. Cascade R- 
CNN (Cai and Vasconcelos, 2019) contains a series of detectors to ensure 
high-quality object detection with adaptive IoU thresholds. GA Faster R- 
CNN (Wang et al., 2019a) utilizes semantic features to predict both the 
locations and the scales and aspect ratios in the RPN, which is intro-
duced in Sec. 3.2. RetinaNet (Lin et al., 2018) concentrates training on a 
sparse set of hard examples and avoid a large quantity of easy negatives 
from overwhelming the detector during training. Libra Faster R-CNN 
(Pang et al., 2019) addresses three different levels of imbalance, 
including objective level, feature level and sample level through 
balanced L1 Loss, balanced feature pyramid, and IoU-balanced sam-
pling, respectively. Grid R-CNN (Lu et al., 2019) mainly adopts a grid 
guided localization scheme to attain outstanding object detection re-
sults. MOPAD (Zheng et al., 2021a) combines a Refined Pyramid Feature 
(RPF) module and a hybrid class-balanced loss module to achieve 
satisfying observation of the growing status of individual tree crowns. 

Table 3 
The precision, recall and F1 score for four atolls using deep learning based tree 
detection methods.  

Index Tenararo Vahanga Tenarunga Matureivavao 

TP 32,313 19,753 25,789 26,428 
FP 3884 3274 5583 3213 
FN 3952 3403 5316 3619 
Precision 89.27% 85.78% 82.20% 89.16% 
Recall 89.10% 85.30% 82.91% 87.96% 
F1-score 89.19% 85.54% 82.56% 88.55% 
Average F1 score 86.46%  
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Sparse R-CNN (Sun et al., 2021) completely avoids all efforts related to 
object candidates design and many-to-one label assignment by elimi-
nating handdesigned object candidates for learnable proposals. PTDM 
(Yuan et al., 2022) proposes a tree detection method that introduces the 
attention mechanism and a Ghost module into the lightweight model 
network, as well as a feature-fusion module to improve the feature- 
extraction ability. 

We show coconut tree crown detection results for these four remote 
atolls in Table 4. Our proposed COCODET achieves the average F1 score 
of 86.46% for coconut tree crown detection, with improvements of 4.33 
~ 12.02% compared to other SOTA object detection algorithms. In 
general, one-stage object detectors (RetinaNet and RepPoints) perform 
worse than two-stage object detectors, which is in line with the general 
trend (Zhao et al., 2019; Oksuz et al., 2020). Especially, we can find out 
that our COCODET has significantly greater accuracy for coconut tree 
crown detection in the Vahanga, with 4.65% ~ 11.49% improvement. 
Although Faster R-CNN performs better than two one-stage object de-
tectors (RetinaNet and RepPoints), with improvements of 5.33% and 
0.86%, respectively, with an average F1 score of 79.77%, it is showing 
indications of degradation. Libra R-CNN, Cascade R-CNN, GA Faster R- 
CNN and Grid R-CNN achieve some improvements compared to Faster 
R-CNN with 0.25 ~ 1.75% gain. Figs. 7-10 display the detection results 
of aforementioned object detection methods, which demonstrate the 
best results of our proposed COCODET compared with other SOTA al-
gorithms. The green points, red squares and yellow circles represent TPs, 
FPs and FNs, respectively. COCODET identifies much fewer confusions 
with other vegetation, shadows, and so on, and has fewer missing co-
conut trees. More COCODET results and comparative results can be 
found in Figs. A.23 ~ A.26 in Appendix A. 

4.2.4. Ablation studies for COCODET 
In this section, we initially analyze how different depths of ResNet 

influence the model performance and anchor generation methods. Then, 
considerable ablation tests are performed, assessing the Adaptive 
Feature Enhancement (AFE) and the Cross Scale Fusion (CSF). These 

ablation tests highlight the effectiveness of individual component and 
add deeper understanding to our propose COCODET. 

Comparisons among different CNN backbone networks, the 
anchor generation ways and the threshold of confidence. The 
effectiveness of different depths of ResNet and ResNeXt is shown in the 
Table 5 (Xie et al., 2017), including 50, 101 and 152 layers. ResNeXt 
(Xie et al., 2017) is constructed through repeating a building block that 
aggregates a series of transformations with the same topology, only 
setting a few hyper-parameters. ResNet-101 has the greatest average F1 
score of 86.46% for coconut tree crown detection and the highest F1 
score for the Vahanga and the Matureivavao according to experiment 
results. ResNeXt-101 and ResNet-152 achieve the highest accuracy for 
the Tenarunga and the Tenararo, respectively. As a result, we chose 
ResNet-101 as the foundation for our proposed COCODET. To assess the 
methods of anchor formation, we conduct ablation tests on various 
aspect ratios and anchor sizes. As shown in Table 6, the scale setting 
{322, 642, 1282, 2562} improves the average F1 score compared to {642, 
1282, 2562}. On the other hand, although the ratios of {1: 2, 1: 1, 2: 1} 
(the last row in Table 6) slightly outperform than our tree-shape ratios of 
{1: 1} under scale setting of {322, 642, 1282, 2562}, we maintain the 
ratio setting of {1: 1} since this ratio is more appropriate and flexible 
because of the forms of coconut tree tops and the acceleration with 
considerably less creation of candidates throughout the training and 
reference time. Furthermore, we analyze the effect of the confidence 
threshold as shown in Fig. 11, which means that we consider the 
detected bounding box whose probability of classification is larger than 
the confidence as a coconut tree. Although different atolls achieve the 
highest F1 score under different confidence thresholds (0.6 ~ 0.8), the 
average F1 score attains the peak value at a confidence of 0.7. Therefore, 
we select 0.7 as our confidence threshold in this paper. 

Effectiveness for the Adaptive Feature Enhancement (AFE). The 
ablation studies of AFE are shown in Table 7. We firstly evaluate three 
different kinds of pooling strategies, including Global Max Pooling 
(GMP) (Lin et al., 2013), Global Average Pooling (GAP) (Lin et al., 2013) 
and our proposed Multi-scale Adaptive Pooling (MAP). In this way, we 

Fig. 6. Failure cases for FP and FN of coconut tree detection.  

Table 4 
Comparisons (F1 score) among different object detection-based deep learning methods for coconut tree detection in the Acteon Group.  

Method Tenararo Vahanga Tenarunga Matureivavao Average 

Faster R-CNN (Ren et al., 2016) 85.38% 77.95% 73.36% 82.41% 79.77% 
RetinaNet (Lin et al., 2018) 80.12% 74.05% 67.44% 76.19% 74.44% 
GRID R-CNN (Lu et al., 2019) 84.20% 80.72% 77.24% 83.93% 81.52% 
GA Faster R-CNN (Wang et al., 2019a) 86.66% 77.42% 73.59% 82.40% 80.02% 
Cascade R-CNN (Cai and Vasconcelos, 2019) 83.45% 80.89% 76.89% 83.69% 81.23% 
Libra R-CNN (Pang et al., 2019) 83.91% 79.19% 74.84% 82.87% 80.20% 
RepPoints (Yang et al., 2019) 83.33% 79.38% 71.31% 81.62% 78.91% 
MOPAD (Zheng et al., 2021a) 84.23% 79.48% 77.88% 84.65% 81.56% 
Sparse R-CNN (Sun et al., 2021) 84.82% 79.71% 79.81% 84.16% 82.13% 
PTDM (Yuan et al., 2022) 83.45% 80.08% 80.07% 84.04% 81.19% 
COCODET (ours) 89.19% 85.54% 82.56% 88.55% 86.46%  
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adopt summation as the base fusion type instead of the Cross Scale 
Fusion (CSF). We maintain other settings as same as Faster R-CNN (Ren 
et al., 2016) and our T-RPN (Sec. 3.2). We can observe that our MAP is 
the best pooling type among these three pooling strategies, attaining 
0.18 ~ 0.93% gain. It seems that our MAP holds stronger capacity of 
representation, preventing less information loss from the pooling strat-
egy. As for fusion type, we compare summation, Pyramid Scene Parsing 
(PSP) (Zhao et al., 2017) and our proposed CSF. PSP exploits the capa-
bility of global context information through pyramid pooling module, 
attaining 1.47% gain with respect of average F1 score compared to 
summation. Furthermore, adopting our CSF fusing scheme, the average 
F1 score further improve 1.73% compared to PSP (Zhao et al., 2017), 
indicating that our CSF is expert in detecting small coconut tree crowns 
through connecting the shallow and deep level context semantic fea-
tures. Some visualization comparisons can be found in Fig. 12. 

Effectiveness for the Cross Scale Fusion (CSF). Our CSF appears 
twice in COCODET, first in the AFE module (see Fig. 4(c) in Sec. 3.1), 

and then after T-RPN (see Fig. 4(d) in Sec. 3.3). Sec. 4.2.4 demonstrates 
that CSF performs higher detection accuracy compared to other fusion 
types in the AFE module. Without using the CSF strategy, the original 
Faster R-CNN directly undergoes convolutional layers and FC layers. The 
last row of Table 7 shows that utilizing our CSF after RoI pooling layers 
improves the detection results with a 1.48% gain of average F1 score and 
with 0.78%, 1.99%, 1.64% and 1.53% improvement for the four atolls, 
respectively. Also, we can observe that in Fig. 12, there are much less 
false positives (other objects detected as coconut trees) and less false 
negatives (missing coconut trees) after adopting CSF strategy, either in 
AFE module or after T-RPN module. 

Sensitive analysis for hyperparameters tuning. We compare the 
performances under different hyperparameters, such as the trade-off 
weight β in Eq. 1 (see Fig. 13(a)), the optimizer (see Fig. 13(b)), the 
momentum (see Fig. 13(c)) and the learning rate (see Fig. 13(d)). 
Therefore, according to Fig. 13, Stochastic Gradient Descent (SGD) is 
chosen as the optimizer, and we use the momentum of 0.9 and the initial 

Fig. 7. Coconut tree crown detection results for Region 1 in the Tenararo.  

Fig. 8. Coconut tree crown detection results for Region 1 in the Vahanga.  
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learning rate of 0.01. The trade-off weight β is used to balance the 
classification and localization of bounding-box loss, and β = 1.0 achieves 
the highest coconut detection performance. 

We also display the training loss and the validation loss in Fig. 14. 
Generally, learning rate decay is a common technique to help the 
network converge to a local minimum and avoid oscillation (Ng, 2017). 
As shown in Fig. 14, when we decrease the learning rate by a factor of 
0.1 after the 12th and 16th epoch, we can find that the validation loss 
has a clear decrease around the 12th epoch and 16th epoch. Also, 
decreasing the learning rate makes both the validation and training loss 
curve less oscillating, helping to better optimize and generalize the 
model. 

5. Discussion 

In the following, we first discuss the relationship between coconut 
tree detection performance and other factors, including different land 
cover types, different elevation values and different crown sizes in Sec. 
5.1. And then, we discuss the connections between coconut tree distri-
bution and ecological function of islands in the Acteon Group (Sec. 5.2). 
Then, we provide more specific information on how the coconut plan-
tation can wildlife biodiversity, including positive and negative impacts 
in Sec. 5.3. After that, we examine the transferability of COCODET for 
ITCD in general in Sec. 5.4. Finally, we discuss the potential applications 
of COCODET in Sec. 5.5. 

Fig. 9. Coconut tree crown detection results for Region 1 in the Tenarunga.  

Fig. 10. Coconut tree crown detection results for Region 1 in the Matureivavao.  
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5.1. Relationships between coconut tree detection performance and other 
factors 

5.1.1. Relationship between coconut tree detection performance and land 
cover types 

As for the relationship between detection performance and different 
land cover types, we use ESRI land cover mapping with a 10 m resolu-
tion (see Fig. 15) (Karra et al., 2021) and display the F1 score and the 
land cover types for these four atolls in Fig. 16. ESRI land cover results 
have some obvious misclassification (such as “Snow/Ice”), which can be 
seen in Fig. 15. We can find that the detection performance achieves 
highest F1 score on the land cover of “Trees”, and achieves lowest F1 
score on the land cover of “Snow/Ice” or “Flood vegetation”, which 
indicates there exists more confusions on other land cover types, causing 
more false positives for other objects detected as coconut trees. 

Land cover mapping is quite essential for building assessment of the 
ecological environment of the Acteon Group. To this end, the accurate 
monitoring of coconut trees and land cover changes in these remote 
atolls from remote sensing images is quite essential to know the devel-
opment of the expansion of these loopholes and the growing status of 

coconut trees. In addition, tree species classification is also quite 
important for these four remote atolls from an environmental perspec-
tive. As introduced in Sec. 4.1.1, coconut palm trees have dominated the 
Acteon Group for over 500 years, where the ecosystem is really simple. 
To this end, recognizing other tree species in these atolls can help us to 
understand the development of ecological evolution. Also, other tree 
species in between the rows of coconut plantations can enrich the plant 
diversity, enhance ecological resistance and increase the food product 
for endangered bird species (such as Pisonia and Achyranthes) (Lees 
et al., 2022). Therefore, both land cover types and tree species classifi-
cation are crucial for these four remote atolls, reflecting the relationship 
between coconut palms and other plant species, and know about the 
overall environmental and ecological conditions of the atolls. 

Fig. 11. The F1 scores of coconut tree detection under different confidence threshold.  

Table 5 
The F1 scores of different depth of ResNet and ResNeXt for our COCODET.  

Method Tenararo Vahanga Tenarunga Matureivavao Average 

ResNet-50 85.19% 80.46% 76.17% 84.64% 81.62% 
ResNeXt- 

50 
85.35% 80.02% 76.78% 85.08% 81.81% 

ResNet- 
101 89.19% 85.54% 82.56% 88.55% 86.46% 

ResNeXt- 
101 

88.92% 84.03% 83.52% 87.00% 85.87% 

ResNet- 
152 

90.71% 84.79% 80.64% 86.56% 85.68% 

ResNeXt- 
152 

84.61% 80.79% 79.58% 85.03% 82.74%  

Table 6 
The F1 scores of ablation studies of different anchor sizes and aspect ratios.  

Ratios Scale Tenararo Vahanga Tenarunga Matureivavao Average 

{1: 1} {642, 1282, 2562} 86.01% 83.20% 80.85% 86.63% 84.17% 
{1: 2, 1: 1, 2: 1} {642, 1282, 2562} 87.05% 83.91% 81.51% 87.18% 84.91% 
{1: 1} {322, 642, 1282, 2562} 89.19% 85.54% 82.56% 88.55% 86.46% 
{1: 2, 1: 1, 2: 1} {322, 642, 1282, 2562} 89.63% 85.13% 82.73% 88.40% 86.47%  

Table 7 
Comparisons among different strategies, including Faster R-CNN (the baseline) 
(Ren et al., 2016), MAP, PSP (Zhao et al., 2017), AFE and CSF.  

Method Tenararo Vahanga Tenarunga Matureivavao Average 

Faster R- 
CNN 

85.38% 77.95% 73.36% 82.41% 79.77% 

þ GMP* 84.30% 79.77% 76.15% 83.18% 80.85% 
þ GAP♯ 84.95% 80.89% 76.89% 83.69% 81.60% 
þ MAP† 85.38% 80.85% 77.03% 83.85% 81.78% 
þ MAP þ

PSP♭ 86.56% 82.52% 78.55% 85.38% 83.25% 

þ MAP þ
CSF 
(AFE) 

88.41% 83.55% 80.92% 87.02% 84.98% 

þ AFE þ
CSF 

89.19% 85.54% 82.56% 88.55% 86.46% 

*GMP denotes Global Max Pooling. ♯GAP denotes Global Average Pooling. 
†MAP denotes Multi-scale Adaptive Pooling. ♭PSP denotes Pyramid Scene 
Parsing. 
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5.1.2. Relationship between coconut tree detection performance and the 
crown size 

Here, we discuss how tree crown sizes influence detection results in 
these four remote atolls. We classify the tree crown sizes into three 
categories: (a) small tree crown size (diameter < 8 m); (b) general tree 
crown size (8 m ≤ diameter < 13 m); and (c) large tree crown size 
(diameter ≥ 13 m). Table 8 lists the precisions of coconut detection 
under different sizes of tree crowns using our proposed COCODET in the 
Acteon Group. We calculate the precision according to Eq. (2) using TP 
and FP (see their definitions in Eq. (2) in Sec. 4.2.1). 515 We can observe 
that most of the tree crowns’ diameter are 8 ~ 13 m and their average 
precision is 87.53%, which is much higher than the precisions of the 
small tree crown size and the large tree crown size. Although our 
COCODET is better at detecting small objects in remote sensing images 

than other object detection-based algorithms, it suffers serious deterio-
ration of precision towards smaller objects (when the diameter of co-
conut tree <8 m). The another reason of low performance for coconut 
trees with small tree crown sizes and large tree crown sizes maybe that 
our training dataset is lack of coconut trees with small tree crown sizes 
and large tree crown sizes, and most of coconut trees in the training 
dataset are belong to the general tree crown size. Therefore, our model 
learns less representations and features of small coconut trees and large 
coconut trees. Additionally, coconut trees with larger crown sizes or 
smaller crown sizes are more easier to be overlapped by other coconut 
trees, which causes unavoidable performance deterioration. 

Fig. 12. Comparisons among different strategies, including Faster R-CNN (the baseline) (Ren et al., 2016), MAP, PSP (Zhao et al., 2017), AFE and CSF.  

Fig. 13. (a) The F1 scores of different trade-off weight β in Eq. (1) for our COCODET. (b) The F1 scores of different optimizers for our COCODET. (c) The F1 scores of 
different momentum for our COCODET. (d) The F1 scores of different learning rates for our COCODET. 
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5.1.3. Relationship between coconut tree detection performance and the 
elevation value 

In this section, we analyze the detection performance under different 
DEM. As shown in Fig. 17, we display the relationship between the 
detection performance and the elevation of these coconut palms using 
NASA STRM (Rodriguez et al., 2006). We can observe that the detection 
performance is better with a higher DEM. The reason maybe that the 
layout of coconut trees in the higher DEM is kind of sparse than that in 
the lower DEM, with less sheltering or overlapping with each other. In 
addition, a higher DEM is generally located far from the sea line, which 
may reduce the number of confusions with other land cover types or 
with shadows of coconut trees. 

5.2. Connections between coconut tree distribution and the ecology 

Table 9 summarizes the number of coconut palms and the density 
(trees per ha) for these four atolls in the Acteon Group. We can observe 
that the Tenararo contains the most coconut trees with 41,171 detected 
by our algorithm across the whole atoll. In addition, the coconut density 
of the Tenararo achieves 151 trees per ha, which is far higher than other 

three atolls. Fig. 19 shows the density distribution for these four atolls. 
Tenararo has the largest number of birds and other threatened species, 
as well as introduced mammals ((Blanvillain, 2000; Blanvillain et al., 
2002)). For example, Polynesia ground doves have a population size of 
about 120 globally, and most of them are living in Tenararo. 

Fig. 18 shows the coconut canopy cover area and coconut canopy 
cover percent for these four atolls in the Acteon Group. These four atolls’ 
coconut canopy cover area is 228 ha, 133 ha, 160 ha and 167 ha, 
respectively. According to our detection results, Tenararo has the 
highest canopy cover percentage of 84%. The percentage vegetation 
cover is higher than recorded previously (see (Blanvillain et al., 2002; 
Pierce and Blanvillain, 2004; Griffiths et al., 2008; Sayre et al., 2019)), 
especially for Tenararo (39% vs. 84%) and Matureivavao (14% vs. 42%). 
As for Vahanga and Tenarunga, the previous recorded vegetation per-
centages is only slightly lower than our results, with 30% vs. 35% and 
32% vs. 38%, respectively. According to the satellite images shown in 
Fig. 5 and the 10 m land cover / land use product (Karra et al., 2021), 
our results are more accurate than those previously reported. 

Based our coconut palm detection results, we provide a series of tree 
density distribution maps in Fig. 19, with spatial resolution of 500 m, 
100 m and 10 m (from top to bottom). Because other vegetated areas (e. 
g. shrubland) have low cover (15% (Karra et al., 2021)), these coconut 
palm density maps are almost equal to real tree density maps. Compared 
to a global tree density map with a spatial resolution of 1 km from 
Crowther et al. (2015) (see Fig. 20), our density maps are more accurate 
and applicable for environmental and ecological analysis. Our tree 
detection results and density maps are available on https://github.com/ 
rs-dl/coconut_in_Acteon_Group and we hope that our results will be 
helpful for those researchers who are interested in the Acteon Group. 

From the tree density map in Fig. 19, it is observable that the tree 
density in the southwest direction is quite low for all these four atolls. As 
shown in Fig. 21, we describe the land area (a-d), canopy area (e-h) and 
canopy percentage (i-l) for four atolls. Initially, all these atolls are 
complete circles from volcanic vent, while they gradually open loop-
holes as time goes by. These loopholes mainly locate at the southwest 
corner and cause a low canopy cover. Explanations for low canopy cover 
in the southwest direction may be the result of damage by ocean currents 
or other damages. 

If we do not do anything, the loopholes may become larger and 
larger, and the land area will accelerate to disappear. To this end, the 
situation for these four atolls will be more vulnerable and dangerous, 
and many special species will be under threat because of the missing 

Fig. 14. The training loss and validation loss for training process of our pro-
posed COCODET. 

Fig. 15. The land cover mapping results of four remote atolls in the Acteon Group from ESRA 10 m product (Karra et al., 2021).  
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habitat. For example, the breach in the southwest of the Matureivavao 
may accelerate to ruin the environment of the northeast of this island, 
where the land and the canopy area are both lower than other directions. 
In fact, the Matureivavao has the lowest number of native species, such 
as Polynesian dove and atoll fruit dove. The Tenararo and the Vahanga, 
which are considered as an Important Bird Area and a Key Biodiversity 
Area (Griffiths et al., 2011), have more complete land area and more 
canopy cover area. 

5.3. The impacts of abandoned coconut plantations in the Acteon group 

In this revision, we have added a section to discuss the impact of 
coconut plantations on the biodiversity in these four remote atolls. As 
introduced before, the Ackeon Group of atolls in French Polynesia of the 
Pacific Ocean (Fig. 5) is home to several threatened and near-threatened 
bird species, such as Polynesian grounddove (Gallicolumba erythroptera) 
and Tuamotu sandpiper (Prosobonia cancellata). The abandoned coconut 
plantation are important habitats for these endangered birds. Table 10 
lists the endangered bird species (such as Polynesian ground dove, atoll 
fruit dove and Tuamotu sandpiper) observed on these four atolls in 
Griffiths et al. (2008). We can find that the Tenararo holds the best 
habitat for these threatened and near-threatened bird species, with 
significantly higher numbers than on the other three atolls, including 
Vahanga, Tenarunga and Matureivavao. In the meantime, we notice that 
the Tenararo has the highest density and canopy area of coconut plan-
tations (see Fig. 18 and Table 9), proving that the importance of coconut 
plantations for these endangered bird species. To this end, the benefits of 
coconut plantations are threefold: 

(1) The abandoned coconut plantations provide a vital habitat for 
many endangered bird species, but also provide safe havens to prevent 
Pacific rats and cats from eating their eggs of these threatened and near- 
threatened birds species. 

(2) The abandoned coconut plantations provide good growth envi-
ronment of Pisonia and Achyranthes, which many endangered bird 
species prefer for food, in between the rows of coconut palms, with 
enough nutrients and free from storm destruction. 

(3) The abandoned coconut plantations also help to reduce the land 
and vegetation loss from dramatic effect of swells or other climate 
change phenomenon, which have been proved the negative effects of sea 

Fig. 16. The relationship between the F1 score and the land cover types for four atolls in the Acteon Group using our proposed COCODET. We use ESRI 10 m (Karra 
et al., 2021) as the land cover mapping. 

Table 8 
The precisions of coconut detection under different sizes of tree crowns using our 
proposed COCODET.  

Crown size Tenararo Vahanga Tenarunga Matureivavao 

Small 
tree 
crown 
size 

TP 201 242 392 198 
FP 295 229 403 202 
Precision 40.52% 51.38% 49.31% 49.50% 
Average 
Precision 

47.68% 

General 
tree 
crown 
size 

TP 31,978 19,336 25,124 26,064 
FP 3519 2961 4983 2937 
Precision 90.09% 86.72% 83.45% 89.87% 
Average 
Precision 87.53% 

Large 
tree 
crown 
size 

TP 134 175 273 166 
FP 70 84 197 74 
Precision 65.69% 67.57% 58.09% 67.17% 
Average 
Precision 

65.13%  
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leval rises to the species (Lees et al., 2022). 
However, coconut plantations in these four remote atolls of the Pa-

cific Ocean also have some negative impacts for endangered bird spe-
cies. The establishment of coconut plantations can increase the 
frequency of human visits to islands and consequently the likelihood of 
predator introduction. In addition, visiting birdwatchers, as well as local 
fishermen and coconut crab Birgus latro harvesters, may accidentally 
introduce rats, invasive ants, etc. which pose a threat to many endan-
gered bird species as they colonise these atolls. 

5.4. The transferability of COCODET for coconut tree crown detection 

This section details and examines the transferability of COCODET. 
We have 12 transfer tasks in the experiment. For example, we train the 
COCODET using training data from each atoll in the Acteon Group (for 
example, the Tenararo (TA)) and test it on three distant atolls (for 
example, the Vahanga (VA), Tenarunga (TU), and Matureivavao (MA)). 
In this case, we have three transfer tasks: TA → VA, TA → TU, and TA → 
MU. It is noteworthy that the last column of”All” in Fig. 22 means the 
average F1 score of four transfer tasks, and the last row of”All” means 
the training set contains all four atolls, which is the same as reported in 
Table 3. Fig. 22 illustrates the transfer matrix of F1 score for all our 
transfer tasks. The atoll names in the left of the matrix represent the 
source domain (training region) while the atoll names below the matrix 
represent the target domain (test region). The model trained from one 
atoll cause − 7.5 ~ − 12.43% deterioration compared to the model 
trained from all atolls with respect to the F1 score. The best performance 
comes from local training, but training with all datasets achieves a 
satisfactory performance, that is only lower than the F1 scores along the 
diagonal of the matrix. Obviously, there exists serious domain gaps 
among these four remote atolls according to the accuracy of transfer 
tasks, although their sensors and spatial resolution are identical. 

Fig. 17. The relationship between the F1 score and the elevation value for four atolls in the Acteon Group using our proposed COCODET. We use NASA STRM 
(Rodriguez et al., 2006) as our DEM product. 

Table 9 
The tree number and the density (trees per ha) for four atolls in the Acteon 
Group. The density is calculated as tree number / total land area.  

Index Tenararo Vahanga Tenarunga Matureivavao Overall 

Tree 
Number 

41,171 24,085 28,838 30,162 124,256 

Density 
(tree 
per ha) 

151.36 63.05 67.85 76.17 84.24  

Fig. 18. The coconut canopy cover area and the coconut canopy cover percent for these four atolls in the Acteon Group. The canopy cover percent is calculated as 
canopy cover area / total land area. 
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Fig. 19. The density distribution for these four atolls in the Acteon Group. The spatial resolutions of the top row, the middle row and the bottom row are 500 m, 100 
m and 10 m. From left to right, the atolls are Tenararo, Vahanga, Tenarunga and Matureivavao, respectively. 

Tahiti

Tuamoto Archipelago

The Acteon Group

Fig. 20. The density distribution of coconuts with a spatial resolution of 1 km for four atolls in the Acteon Group, taken from Crowther et al. (2015).  
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Owing to the domain shift problem (Tong et al., 2020; Zheng et al., 
2021c, 2022c), where each domain’s own context information with 
specialty, spectral characteristics, and changeable environment, it’s 
difficult to use vanilla training models without transferable tricks to 
another domain, contributing to a significant drop in detection accu-
racy. Recently, the issue of domain adaptation and domain generaliza-
tion have been extensively discussed and explored in remote sensing 
community. However, the same issue in the cross-temporal or crossre-
gional ITCD area has received little attention (Zheng et al., 2020; Wu 
et al., 2020a; Zheng et al., 2022a). More sophisticated, resilient, and 
generic algorithms for cross-temporal, cross-regional, or cross- 
instrument ITCD need to be developed and explored in the future. 

Fig. 21. A radar map of the land, canopy and the canopy percentage for these four atolls. (a)-(d): The radar map of the land area for the Tenararo, Vahanga, 
Tenarunga and Matureivavao, respectively. (e)-(h): The radar map of the canopy area for these four atolls. (i)-(l): The radar map of the canopy percentage (Unit: %) 
for these four atolls. 

Table 10 
The endangered bird species observed on Tenararo, Vahanga, Tenarunga and 
Matureivavao in Griffiths et al. (2008).  

Bird species Tenararo Vahanga Tenarunga Matureivavao 

Polynesia ground 
dove 

20 ~ 50 1 ~ 2 0 0 

Atoll fruit dove 100+ 1 ~ 2 0 No record 

Tuamotu sandpiper 
600 ~ 
1000 2 ~ 3 1 Few  

Fig. 22. The transfer matrix of F1 score for coconut tree crown detection in 
four remote atolls in the Acteon Group. The atoll names in the left of the matrix 
represent the source domain (training region) while the atoll names below the 
matrix represent the target domain (test region). TA, VA, TU, MA denotes 
Tenararo, Vahanga, Tenarunga and Matureivavao, respectively. “All” denotes 
the training set contains all four atolls, which is the same as reported in Table 3. 
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5.5. Potential future works 

COCODET is an effective individual tree crown detection algorithm 
which is capable of highly accurate coconut tree crown detection (see 
Sec. 4.2.2). Future work could extend beyond the utilization of RGB- 
band satellite images that only represent the context semantic infor-
mation and features, such as blue water, green vegetation or trees, and 
coconut-shape characteristics. Multi-spectral remote sensing images 
have a stronger capacity for capturing inherent features of coconut 
crowns and recognizing their growing status (Holmgren et al., 2008; 
Dash et al., 2017; Johansen et al., 2020). Our algorithm makes contri-
butions to distinguishing coconut trees from other vegetation and 
detecting coarsely pixelated tree crowns through enhancing the feature 
representation with multi-scale feature fusion. COCODET is currently 
limited to detecting coconut trees in another different areas or images 
(Sec. 5.4) and a future step is to employ adversarial learning and 
transferable attention mechanism to enhance the model’s transferability 
and generalization. This would broaden COCODET’s applications, 
allowing it to be employed to detect other tree species, such as oil palm 
tree (Mubin et al., 2019), urban trees (Erker et al., 2019), or be used in 
agricultural applications, such as yield prediction (Nevavuori et al., 
2019) and crop mapping (Xu et al., 2021a; Lin et al., 2022). Further-
more, we may extend coconut tree detection to a global scale. We can 
use globally available remotely sensed data (such as Sentinel, Landsat, 
MODIS, NASA GEDI, etc.) to map global coconut plantation at first, and 
then guide us to determine the approximate scope for counting indi-
vidual coconut trees from higher-resolution remote sensing images. 

6. Conclusions 

In this study, we present a relatively more accurate coconut tree 
detection method - COCODET – that comprises of three main parts. First, 
we design an Adaptive Feature Enhancement (AFE) module for 
improving the capacity of representation at the highest level of feature 
map. AFE improves the feature representation ability at the highest level 
of the feature map, which contributes to better distinguish between 
coconut trees and other tree species or vegetation. Second, we modify 
the original RPN as T-RPN for producing coconut tree candidates. 
Finally, we propose a Cross Scale Fusion (CSF) module for integrating 
multi-scale information to improve the performance of detecting small 
coconut tree crowns, which benefits to fuse different level features of 
coconut tree crowns and achieve the connections between shallow and 
deep level semantic features. We detected all coconut trees in four 
remote atolls in the Acteon Group of the Pacific Ocean using our pro-
posed COCODET and high-resolution satellite imagery. Our approach 
achieves an impressive detection accuracy with an average F1 score of 
86.46% during a real-time inference process. Our ablation experiments 
demonstrate that our AFE, T-RPN and CSF considerably increase the 
detection accuracy. Our proposed COCODET outperforms other SOTA 
object detection methods with an improvement of 4.33 ~ 12.02% via 
the index of the average F1 score. 

In these four atoll islands, we detect 120,237 individual coconut 
palm trees (84 trees per hectare), with 688 ha of coconut canopy cover in 
total. There are many threatened and near-threatened species living on 
these islands, such as the Polynesian ground dove (Gallicolumba eryth-
roptera) and Tuamotu sandpiper (Prosobonia cancellata). To this end, all 
our detected coconut trees are held as a database that lays the founda-
tion for ecological and preservation fieldwork and a comprehensive 
understanding of the ecosystem and biodiversity of the remote atolls. 
According to coconut detection results and the statistics from bird sci-
entists, we can find that Tenararo holds the best habitat for these 
threatened and near-threatened bird species, with much more amount 
than other three atolls, including Vahanga, Tenarunga and Matur-
eivavao. In the meantime, we notice that the Tenararo has the highest 
density and canopy area of coconut plantations, which prove that the 
importance of coconut plantations for these endangered bird species. 

Also, we explore both the positive and negative impacts of abandoned 
coconut plantations in these four atolls. Furthermore, based our coconut 
detection results, we also provide a series of tree density distribution 
maps and it is observable that there exist loopholes in the southwest 
direction for all these four atolls. It calls attention to take some actions to 
protect these remote atolls, preventing the loopholes from becoming 
larger and larger. Therefore, accurate monitoring of coconut trees in 
these remote atolls from remote sensing images is quite essential to 
know the development of the expanding of these loopholes and the 
growing status of coconut trees. 

Remote sensing technique and artificial intelligence algorithms show 
great potential for accurately observing and conveniently analyzing the 
environmental and ecological impacts in real-time. Furthermore, we will 
use multi-temporal or multi-source remote sensing images in the future, 
to achieve time-series monitoring trees and their growth status, not only 
in the Acteon Group, but also in other remote atolls in the Pacific Ocean. 
Long time series and real time monitoring of trees in these remote atolls 
could really help us to precisely analyze the wildlife biodiversity, carbon 
stock, environmental protection, and natural disasters, etc. 
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