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Abstract— 3-D building reconstruction from monocular remote
sensing imagery is an important research problem that has
been extensively studied for several decades. Although monocular
remote sensing imagery is a more economic data source compared
with the LiDAR data and multiview imagery, its limited infor-
mation results in great challenges and restricts the performance
of existing monocular reconstruction methods. Moreover, the
expensive cost and the limited quantity of 3-D annotations also
restrict the application scenes of existing methods, which are
mostly based on fully supervised learning. In our previous work,
we have proposed MTBR-Net, a monocular building reconstruc-
tion method that consists of a fully supervised multitask network
and a postprocessing module for optimizing the reconstruc-
tion results. In this work, we further propose WS-MTBR-Net,
a weakly supervised building reconstruction network that uses
fewer 3-D annotations and achieves better performance in an end-
to-end manner. Specifically, our WS-MTBR-Net fully leverages
the relationship between different components of a 3-D building
instance and the property of off-nadir images to improve the
footprint segmentation boundary, based on six modified tasks
and a new network structure with an improved feature warping
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module to support weakly supervised learning. We also design a
new training strategy via a hybrid loss function that enables using
the training samples with different annotation levels, i.e., com-
plete 3-D annotations, 2-D footprint annotations, and image-level
angle annotations. The results on the BONAI Shanghai and Xi’an
test datasets demonstrate that our method achieves competitive
performance when using 50% fewer 3-D-annotated samples, and
improves the footprint segmentation F1-score by around 4%
compared with current state-of-the-art.

Index Terms— 3-D building reconstruction, high-resolution
remote sensing images, multitask learning, weakly supervised
learning.

I. INTRODUCTION

AS A FUNDAMENTAL task for large-scale city mod-
eling, 3-D building reconstruction has been extensively

studied for several decades. Although the aerial LiDAR data
and multiview stereo imagery have become the primary
data sources for many existing 3-D building reconstruction
methods [1], [2], these data types are difficult to be used
in large-scale building reconstruction due to the expensive
cost, low frequency, limited coverage, and the requirement of
multiple homologous images over the same area. The building
reconstruction from monocular remote sensing imagery, on the
contrary, provides a more economic solution for large-scale
real-world applications. Meanwhile, the limited information of
monocular remote sensing images and the diversity of building
structures also result in great challenges for large-scale 3-D
building reconstruction.

For 3-D building reconstruction from monocular remote
sensing images, most recent methods are based on deep neural
networks for building height regression [3], [4], [5], [6],
[7], [8], which are inspired by the progress of supervised
monocular depth estimation. Several studies aim at single-task
height estimation from near-nadir images [3], [5], which take
up a small proportion of the remote sensing images. For the
building height estimation from monocular off-nadir images,
some recent studies aim at learning the geocentric pose of
buildings via using the additional information provided by
the off-nadir images due to the parallax effect of roof and
footprint [9], [10], or transfer deep learning models from a
large-scale synthetic dataset to different real-world datasets in
a few-shot cross-dataset setting [11]. However, these studies
only focus on the single height estimation task instead of
reconstructing the 3-D building model.
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Similar to the studies regarding joint depth estimation and
semantic segmentation from monocular images, the build-
ing footprints or other types of semantic labels can also
be used as extra useful information for height estimation,
especially for the near-nadir images without the parallax effect.
Consequently, the existing studies design multitask networks
for joint footprint extraction and height estimation [6], [7],
or exploit the semantic labels as the prior information for
height estimation [4]. Although achieving better height estima-
tion performance, these studies fail to explore the relationship
between different components of a building instance (e.g.,
roof, footprint, and facade), and the relationship between the
building heights and semantic types. Moreover, the existing
monocular building reconstruction methods are designed for
supervised learning, requiring a large number of expensive
and fully annotated 3-D labels for network training.

However, due to the expensive annotation cost of the height
information, the public available datasets for 3-D building
reconstruction are still very insufficient, which also restricts
the performance and application scenes of the existing 3-D
building reconstruction methods. In Table I, we summarize
the commonly used building datasets for footprint segmenta-
tion and 3-D reconstruction. ISPRS Potsdam and Vaihingen
(denoted by ISPRS) [12] and Urban Semantic 3-D (denoted
by US3D) [13] are the most popular datasets used in recent
building reconstruction studies [4], [5], [6], [7], in which most
of the images are near-nadir (with nearly overlapped roof and
footprint). The DFC19 (extended from US3D) and ATL-SN4
are two datasets for monocular building height estimation
proposed by [9], containing off-nadir images with a wider
range of oblique viewing angles.

As shown in Table I, owing to the low annotation cost
and the increase in free geographic data (e.g., Open Street
Map), the public building footprint datasets have an extremely
larger coverage and quantity compared with the building
reconstruction datasets with 3-D annotations. These large-
scale 2-D footprint datasets can provide new opportunities for
improving the 3-D building reconstruction performance and
have the potential of reducing the 3-D annotation requirement
if they are effectively used by semi-supervised or weakly
supervised methods.

In our previous work, we have proposed MTBR-Net [14],
a multitask building reconstruction network that is trained in
a fully supervised manner. In this work, we further propose
WS-MTBR-Net, a weakly supervised building reconstruction
network for monocular building reconstruction using fewer
3-D labels. Different from the existing methods that design
a multitask network with a shared feature map and trained
with fully annotated 3-D labels, the architecture design of
our WS-MTBR-Net is based on the relationship between
the main components of each 3-D building instance (roof,
footprint, and the height) and the property of the off-nadir
remote sensing images, with different head structures and
feature maps designed for different prediction tasks. Moreover,
it is a unified framework that is capable of using the training
samples with different annotation levels (i.e., complete 3-D
annotations, 2-D footprint annotations, and image-level angle
annotations), owing to our proposed network architecture and

TABLE I
SUMMARY OF SEVERAL POPULAR DATASETS FOR BUILDING FOOTPRINT

SEGMENTATION AND 3-D RECONSTRUCTION. THE PUBLIC BUILDING
FOOTPRINT DATASETS HAVE AN EXTREMELY LARGER COVERAGE

AND QUANTITY COMPARED WITH THE PUBLIC 3-D BUILDING
RECONSTRUCTION DATASETS

a hybrid loss function. The results on the BONAI Shanghai
and Xi’an test datasets [15] demonstrate that our method
achieves competitive performance when only using a half
3-D labels of the state-of-the-art methods and improves the
building segmentation F1-score of the current state-of-the-art
by around 4%.

Our main contributions are summarized as follows.
1) We design WS-MTBR-Net, a weakly supervised build-

ing reconstruction network that fully explores the
relationship between the main components of a 3-D
building instance, based on six modified tasks and a
new network structure with an improved feature warp-
ing module, achieving superior footprint segmentation
and height estimation performance compared with the
current state-of-the-art methods.

2) We propose a new training strategy via a hybrid
loss function that enables the training of WS-MTBR-
Net with different supervision levels, which further
reduces the demand on large-scale training samples with
expensive 3-D annotations compared with the existing
supervised building reconstruction methods.

3) We conduct comprehensive experiments under dif-
ferent settings using: 1) entire 3-D-annotated sam-
ples; 2) partial 2-D-annotated samples + partial
3-D-annotated labels; and 3) entire 3-D-annotated sam-
ples + extra 2-D-annotated samples. The results show
that our method achieves competitive performance using
fewer 3-D labels, and significantly better performance
using the same training set or extra 2-D labels compared
with the current state-of-the-art methods.

II. RELATED WORK

A. Building Footprint Extraction

Building footprint extraction from satellite or aerial images
is a crucial prerequisite for 3-D building reconstruction, which
has been broadly studied for decades. In recent years, deep
neural networks have become the state-of-the-art methods for
building extraction [23], [24], [25], which can be divided into
three categories, i.e., the pixelwise segmentation methods, the
corner-based methods, and the boundary-based methods.

For building segmentation tasks, instance and semantic
segmentation networks have been broadly explored [26],
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[27], [28] and achieved outstanding performances in many
building extraction challenges, such as CrowdAI [19], Deep-
Globe [21], and SpaceNet series [29]. Many studies use
multitask segmentation network to improve the building seg-
mentation performance. In [30], a multitask learning method
was proposed to improve the building boundary prediction
performance, which introduced an extra task to predict the
distance to the border of buildings using an encoder–decoder
network architecture. Yuan [31] proposed the signed dis-
tance representation for building footprint extraction which
achieves better performance than the single-task fully con-
nected network. Similarly, in [5], a modified signed distance
function was introduced and jointly learned with other tasks
for predicting both building footprint outlines and building
heights. To reduce the demand on labeled datasets, several
studies propose self-supervised or semi-supervised learning
strategies for building footprint extraction [28], [32], [33].
In addition, some building footprint extraction methods are
based on the building corners. These methods directly predict
the vertices of a building polygon via a CNN-RNN [34], [35]
or transformer [36] architecture, or combine the pixel-based
multitask segmentation network with a graph-based polygon
refinement network using a rule-based module [37], [38].

Moreover, several other studies propose boundary-based
methods to combine the traditional active contour models with
deep neural networks to improve the segmentation bound-
aries [39], [40], [41], which are mostly designed for single
building extraction, i.e., the input images have been cropped
by the ground-truth bounding boxes.

However, the existing methods of all three categories
perform worse for extracting building footprints from off-
nadir images, which constitute the main proportion in actual
scenes. Especially for high-rise buildings, the existing meth-
ods produce poor footprint segmentation boundaries which
are partially invisible on the off-nadir images. The existing
methods directly predict the building footprint from the feature
map extracted from the initial remote sensing images via a
deep neural network. Our method, on the contrary, predicts
the building footprint from a novel reconstructed feature map
that is obtained by warping the feature map of building roof
using the predicted offset vector (from roof to footprint), which
not only significantly improves the footprint segmentation
performance for off-nadir images but also enables the weakly
supervised learning strategy for 3-D building reconstruction.

B. Monocular 3-D Building Reconstruction

There is an increasing number of studies for 3-D building
reconstruction from monocular remote sensing images, owing
to the inexpensive data acquisition costs and broad data cov-
erage compared with reconstruction from LiDAR data [1] or
multiview imagery [2], [42], [43], [44]. Traditional monocular
3-D building reconstruction methods are mostly based on the
shadow information, lines or line intersections of the building
outlines, and the meta information of satellites such as the
sun–earth relative position [45], [46]. Complicated procedures
with multiple steps are required for reconstructing the final
3-D building model.

Inspired by the progress of monocular depth estimation, the
deep neural network has been used for monocular building
height estimation in several recent studies [11], [47], [48].
Most of these studies are designed for height estimation from
near-nadir images, in which the building roof and footprint
are almost overlapped. Some methods use an encoder–decoder
network to regress the height values [8], or use a generative
adversarial network to simulate a height map [3]. More-
over, considering the limited information provided from the
near-nadir images for height estimation, the semantic labels
have been used as useful extra information in many existing
studies. Some studies design a multitask network for joint
footprint extraction and height estimation [6], [7], [47], while
other studies exploit the semantic labels as prior information
for height estimation [4].

In actual scenes, the off-nadir images constitute the most
proportion of the remote sensing data, in which the parallax
effect of roof and footprint results in more challenges for
extracting the footprint outlines but provides additional useful
information for building height estimation in the meantime.
For off-nadir images, some recent studies [9], [10] proposed
a monocular height estimation method via learning the geo-
centric pose of buildings (i.e., an imagewise flow angle and
a pixelwise magnitude value) using a U-Net architecture [49].
However, these studies only focus on the height estimation
task instead of reconstructing the 3-D building model.

In summary, the monocular building reconstruction methods
in the existing studies require expensive and fully annotated
3-D labels for supervised learning, which are either designed
for 3-D building reconstruction from near-nadir images or
building height estimation from off-nadir images. In contrast,
our proposed approach is a unified framework for weakly
supervised 3-D building reconstruction with a new network
architecture and six modified tasks, which leverages the rela-
tionship between building roofs and footprints on off-nadir
images to enable 3-D building reconstruction with different
supervision levels to reduce the demand for large-scale 3-D
annotations.

C. Weakly Supervised and Semi-Supervised 3-D
Reconstruction

Unlike the rapid progress of supervised 3-D reconstruction
methods, the weakly supervised and semi-supervised 3-D
reconstruction studies are still at an early stage [50], [51],
[52], [53], [54], [55], [56], [57]. For weakly supervised 3-D
reconstruction, Neverova et al. [52] introduced an intermediate
representation that is defined as a segmentation of the hand
into multiple parts, which contains important topological and
structural information to enable the weakly supervised training
for hand pose estimation. In Gwak et al. [55], a weak 2-D
supervision type, i.e., the foreground mask, is effectively used
as an alternative for the expensive 3-D CAD annotation via a
raytrace pooling layer to enable the perspective projection and
backpropagation. For semi-supervised methods, adversarial
learning has been widely used in several semi-supervised 3-D
reconstruction studies. For instance, Yang et al. [53] proposed
a unified framework that combines two types of supervision,
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Fig. 1. Overall framework of our WS-MTBR-Net. We convert the 3-D building reconstruction into six relevant tasks that are learned via an HR-Net-based
multitask network, i.e., roof segmentation, roof boundary orientation prediction, visible part offset prediction, footprint offset prediction, footprint segmentation,
and image-level offset angle prediction. To enable the training of WS-MTBR-Net with different supervision levels, we define a hybrid loss function that combines
the losses calculated from three types of training samples. The network outputs are integrated into the final 3-D model based on a vectorization method.

i.e., a small number of cameras pose annotations to enforce
the consistency of pose invariance and view point, and a large
number of unlabeled images to enforce the realism of rendered
3-D shapes via an adversarial loss. In Ji et al. [54], a semi-
supervised adversarial learning framework was proposed for
monocular depth estimation, which only uses a small number
of image–depth pairs and a large number of easily available
monocular images to achieve high performance.

Different from the existing methods mentioned above, our
proposed approach is designed based on the prior knowl-
edge regarding the 3-D structure of a building instance on
monocular remote sensing images. Specifically, our approach
effectively uses the intrinsic relationship between the roof,
footprint, and the height of each building instance, and the
geometry property of the off-nadir remote sensing images,
which significantly reduces the requirement for the expensive
3-D building annotations and makes full use of the large-scale
and easily available 2-D footprint annotations. To the best
of our knowledge, this is the first work for monocular 3-D
building reconstruction with different supervision levels.

III. METHODS

The overall framework of our WS-MTBR-Net is demon-
strated in Fig. 1. Considering the 3-D structure of building
instances on the monocular remote sensing image, we convert
the 3-D building reconstruction into six relevant tasks that
are learned via an HR-Net-based multitask network. Our
WS-MTBR-Net includes three visible part prediction tasks
(i.e., roof segmentation, roof boundary orientation prediction,
and visible part offset prediction), two footprint-related pre-
diction tasks (i.e., footprint offset prediction and footprint
segmentation), and an image-level offset angle prediction task.
To enable the training of WS-MTBR-Net with different super-
vision levels, we define a hybrid loss function that combines
the losses calculated from three types of training samples. For

the training samples with complete 3-D annotations, the loss
function is calculated from all the visible part prediction tasks
and footprint-related prediction tasks. For the samples with
2-D footprint and image-level offset angle annotations, the loss
function is calculated from the footprint segmentation task and
the image-level offset angle prediction task. For the samples
with only 2-D footprint annotations, the loss function equals
the footprint segmentation loss.

Compared with our previous work [14], WS-MTBR-Net
makes improvements in terms of multitask definition, net-
work architecture and the design of loss function. First, the
roof/facade segmentation and skeleton orientation prediction
tasks are replaced by roof segmentation and roof boundary
orientation prediction tasks, which enables the effectiveness
of our improved feature warping module under the premise
that the roof and footprint of a building usually have the same
contour shape. We also remove the skeleton segmentation task
since WS-MTBR-Net is an end-to-end method that does not
require the height vector optimization strategy used in [14].
Second, different network head structures and feature maps are
designed for different prediction tasks, including an improved
feature warping module for footprint segmentation under the
weakly supervised conditions. Moreover, owing to our net-
work architecture and hybrid loss function, the training of
WS-MTBR-Net can be performed under different supervision
levels.

In the following sections, we first make an analysis of the
3-D building structure on the off-nadir images and introduce
the definitions of the six relevant tasks in our WS-MTBR-Net.
Then we introduce the overall architecture and six task-specific
heads of our WS-MTBR-Net. Next, we introduce the training
of our WS-MTBR-Net, including the loss function of the six
tasks under three levels of supervisions and the total loss.
The implementation details and experimental settings will be
introduced in Section IV.
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Fig. 2. Examples of the buildings on the off-nadir images. The contours of
the building roofs are entirely visible on the monocular off-nadir images. The
contours of the building footprints are partially invisible but have the same
shape as the roof contour and can be obtained from moving the roof contour
in the direction of an offset vector (denoted by the red arrows).

A. 3-D Structure Analysis of Building Instances

We first analyze the 3-D structure of building instances.
Figure 2 shows some example of the buildings on the off-
nadir images. The contours of the building roofs are entirely
visible on the monocular off-nadir images. The contours of
the building footprints, on the contrary, are partially invisible
due to the parallax effects of the off-nadir images. Fortunately,
for each building instance, the footprint contour often shares
the same shape as the roof contour, which can be obtained
from moving the roof contour in the direction of an offset
vector (denoted by the red arrows in Fig. 2). Thus, our method
is based on the premise that the building polygons of the
roof and footprint are only under affine transformation, as the
remote sensing images used in our method are rectified to
have minimal shape deformation. Specifically, there are only
translation transformations and little or no shape changes
between the roof and footprint polygons. The length of offset
vector (the relative height, denoted by Hr ) can be converted
into the actual building height (Ha) according to (1), in which
α denotes the nadir angle (α ̸= 0) and R denotes the spatial
resolution of the image

Ha = Hr × R/ tan(α). (1)

In addition, the buildings on the same image often have the
same offset angle (i.e., the red arrows of the same image are in
parallel). Based on the above analysis, in our WS-MTBR-Net,
we define six relevant tasks to enable the accurate reconstruc-
tion of buildings with fewer 3-D labels, including three visible
part prediction tasks, two footprint-related prediction tasks,
and an image-level angle prediction task.

We first design a roof segmentation task for the visible part
prediction. To convert the raster results into vector 3-D model,
we design an auxiliary task to predict the edge orientation
of the roof boundary following [38]. Moreover, to estimate
the height of each building, we design another task to pre-
dict the offset vector for the visible parts of each building, i.e.,
the complete roof regions and the visible facade regions. For
each building instance, the offset vectors of the roof region
are assigned as the same values, i.e., the vector from roof
to footprint (denoted by [Or

x , Or
y]). For the pixels within the

visible facade region, the offset vectors are assigned as [δx , δy],
i.e., the vector from the specific pixel to the corresponding
pixel on the footprint contour, which has the same direction

Fig. 3. Representation of two types of rotation directions. The left image
shows the annotation of roof and footprint polygons. The middle and right
images show the definitions of offset vector direction (denoted by α) and roof
boundary direction (denoted by β), respectively.

angle as vector [Or
x , Or

y]. The offset vectors of the background
regions are assigned as [0, 0].

Fig. 3 illustrates the definitions of the two types of rotation
directions used in this work, i.e., offset vector direction
and roof boundary direction. In terms of the offset vector
direction (denoted by α), the accurate direction values were
obtained from the accurate roof and footprint polygons, which
were manually annotated during the dataset construction pro-
cess [14], [15]. For each building, the offset vector is defined as
the offset between the roof and footprint polygons in both the
horizontal and vertical directions (i.e., [Or

x , Or
y]). For the roof

boundary direction (denoted by β), the accurate direction value
of each pixel on an edge is defined as the angle between its
normal vector and the gravity orientation in a counterclockwise
direction [38].

As mentioned above, the footprint contours are often par-
tially invisible but have the same shape as the roof contour.
Thus, we design a footprint offset vector prediction task
for warping the feature map of the roof segmentation task,
which enables our WS-MTBR-Net to reconstruct the 3-D
building model with fewer 3-D labels and use the large-scale
footprint annotations to improve the footprint segmentation
performance. For each building instance, the offset vectors of
the footprint regions are assigned as the same value, i.e., the
offset vector of the corresponding roof regions [Or

x , Or
y]. The

offset vectors of other regions are assigned as [0, 0].
Similar to our previous work [14], we design an imagewise

offset angle prediction task to provide additional supervi-
sions for the samples without pixelwise 3-D annotations.
For the monocular remote sensing images, the annotation
of image-level offset angle requires much lower cost and
efforts compared with the pixel-level height or offset vector
annotations. The six tasks are jointly learned via a unified
framework with samples of different annotation levels, which
will be introduced in the following sections.

B. Network Architecture

Our WS-MTBR-Net is based on a modified HR-Net archi-
tecture [58], which is capable of maintaining high-resolution
representations throughout the whole process and beneficial
for remote sensing image analysis. After the four stages of
the original HR-Net architecture, we obtained four feature
maps of different resolutions. The number of channels of the
four feature maps are C , 2C , 4C , and 8C (C is set as 12 in
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Fig. 4. Network structure of visible component prediction heads and footprint
offset prediction head of our WS-MTBR-Net.

our experiments following [14]). The four feature maps are
resampled to the same size and concatenated into a shared
feature map of 15C channels (denoted by Fs). Then we design
six task-specific heads with different structures according to
the characteristic of each task. The details of each task-specific
head of our WS-MTBR-Net are introduced as follows.

1) Visible Components Prediction Heads: For the three
tasks regarding visible components prediction (i.e., roof seg-
mentation, roof boundary orientation prediction, and visible
part offset prediction), we design two segmentation heads
and one regression head based on the original feature map.
As shown in Figure 4, we first apply a 1 × 1 convolution to
Fs for extracting the task-specific feature map for roof seg-
mentation and roof boundary orientation prediction (denoted
by F1

r and F1
ori). Then we apply another 1 × 1 convolution

to F1
r and F1

ori and obtain the final feature map with the
channel number equal to the class number (denoted by F2

r
and F2

ori). Similarly, we first apply a 1 × 1 convolution
to Fs for extracting the task-specific feature map for the
visible part offset prediction task (denoted by F1

vo). Then we
apply another 1 × 1 convolution to F1

vo and obtain the final
prediction map with two channels (denoted by Pvo), indicating
the predicted offset values in x and y directions of each pixel.

2) Footprint Offset Prediction Head: For footprint offset
prediction, we design a regression head based on the concate-
nated original feature map of three relevant tasks. As shown in
Fig. 4, we first apply a 1 × 1 convolution to Fs for extracting
the task-specific feature map for footprint offset prediction
(denoted by F1

f o). Then we concatenate F1
f o with the feature

maps of roof segmentation and visible part offset prediction
(F1

r and F1
vo). In our experiment, the numbers of channels

for the above three feature maps (nc) are all set as 1/4 of
the channel number of Fs following [14], constituting the
concatenated feature map (denoted by F2

f o) of 135 channels.
Finally, we apply two 1 × 1 convolutions to F2

f o and obtain
the final prediction map of two channels (denoted by P f o).

3) Footprint Segmentation Head: Motivated by the intrinsic
relationship between roof, offset, and footprint, we design
a footprint segmentation head based on an improved fea-
ture warping module, of which the feature map of footprint
segmentation is constructed from those of roof segmenta-
tion and footprint offset prediction. Our proposed footprint

Fig. 5. Network structure of footprint segmentation head of
our WS-MTBR-Net.

segmentation head not only improves the footprint segmen-
tation performance compared with directly learning from the
original feature map but also enables the weakly supervised
3-D building reconstruction from a large number of 2-D
footprint annotation. Fig. 5 shows the structure of the footprint
segmentation head based on the warped feature map. First,
the feature map of the first 1 × 1 convolution of the roof
segmentation task (F1

r ) is warped by the footprint offset
prediction map P f o (obtained via the process shown in Fig. 4,
denoted by Conv blocks in Fig. 5), which is implemented
using the grid_sample function provided by PyTorch [59].
The warped feature map (denoted by Fw

r ) usually has clear
roof contours at the footprint locations, which is beneficial for
footprint segmentation due to the similarity of the roof and
footprint contour. Then we concatenate Fw

r with the footprint
offset prediction map (P f o) and the final feature map of the
roof segmentation task (F2

r ), constituting the warped feature
map for footprint segmentation (denoted by F1

f ). Considering
the difficulties in footprint segmentation, we design an extra
stage to enable footprint segmentation from deeper feature
maps. We resample F1

f into four feature maps with different
resolutions and apply the same operations as the former
stage of HR-Net. Similarly, the four output feature maps are
resampled to the same size and concatenated into the final
feature map for footprint segmentation via 1 × 1 convolutions.

4) Offset Angle Prediction Head: To effectively use the
image-level offset angle supervision, we design an offset angle
prediction head based on the image-level feature vector, which
is formulated as a classification problem to simplify the train-
ing process. The class definition and network structure of the
offset angle prediction head is the same as those used in [14],
i.e., based on the official structure and hyperparameter setting
of the classification head introduced in [60]. Specifically, the
four resolution feature maps are fed into a bottleneck and the
output channels are increased from 12, 24, 48, and 96 to 128,
256, 512, and 1024, respectively. Then the high-resolution rep-
resentation is downsampled by a two-strided 3 × 3 convolution
with 256 output channels and added to the representation of
the second high resolution. This process is repeated for two
times to get a small resolution feature map of 1024 channels.
Finally, the feature map is transformed from 1024 channels to
2048 channels via a 1 × 1 convolution followed by a global
average pooling operation. The final 2048-D representation is
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fed into the classifier for offset angle prediction with 37 classes
(36 angle classes and one unsure class).

C. Network Training

In this section, we first introduce the loss function of the six
tasks in our WS-MTBR-Net. Then we introduce the loss func-
tion for our training samples with three levels of supervisions,
i.e, samples with complete pixelwise 3-D supervision, samples
with only pixel-wise 2-D footprint supervision, and samples
with pixelwise 2-D footprint supervision and imagewise offset
supervision. The total loss of our WS-MTBR-Net is introduced
at the end of this section.

We formulate the roof segmentation, footprint segmentation,
and roof contour orientation prediction tasks as pixelwise
semantic segmentation problems. The loss of the three tasks
(Lr , L f , and Lori; uniformly denoted by Lseg) is calculated
according to (2), in which N denotes the pixel number of an
image; C denotes the class number; and yi,c and p(yi,c) denote
the binary indicator and the predicted probability that pixel i
belongs to class c, respectively,

Lseg = −
1
N

N∑
i=1

C∑
c=1

yi,c × log
(

p
(

yi,c
))

. (2)

We formulate the visible part offset prediction and the
footprint offset prediction as pixelwise regression problems.
The loss of the two offset regression tasks (Lvo and L f o;
uniformly denoted by Loff) is calculated by the endpoint error
according to (3), in which O⃗pred

i denotes the predicted offset
vector, i.e., [Opred

x,i , Opred
y,i ]; O⃗gt

i denotes the corresponding
ground-truth offset vector, i.e., [Ogt

x,i , Ogt
y,i ]

Loff =
1
N

N∑
i=1

∣∣∣∣O⃗pred
i − O⃗gt

i

∣∣∣∣
2. (3)

We formulate the imagewise offset angle prediction as a
classification problem for simplifying the training process. The
loss of angle prediction task Lang is calculated by (4), where
K denotes the class number of angle prediction; yk and p(yk)

denote the binary indicator and the predicted probability for
class k, respectively,

Lang = −

K∑
k=1

yk × log(p(yk)). (4)

In our proposed unified framework, the training samples can
be divided into three categories according to the supervision
level: 1) samples with full pixelwise 3-D supervision, which
are denoted by X F

= {x F
1 , x F

2 , . . . , x F
n1}; 2) samples with

partial 3-D supervision (i.e., only imagewise offset supervi-
sion), which are denoted by X P

= {x P
1 , x P

2 , . . . , x P
n2}; and

3) samples with no 3-D supervision, which are denoted by
X N

= {x N
1 , x N

2 , . . . , x N
n3}. All the training samples of the

three categories are provided with the pixelwise 2-D footprint
annotations.

The loss function for the samples in X F (denoted by LX F ) is
defined as the sum of all the segmentation losses and pixelwise

offset prediction losses, which can be calculated according to
the following equation:

LX F = α1Lr + α2L f + Lori + Lvo + L f o. (5)

For the samples in X P , as only the 2-D footprint and
imagewise offset angle annotations are available, the loss
function (denoted by LX P ) is defined as the sum of footprint
segmentation loss and offset angle classification loss according
to the following equation:

LX P = L f + Lang. (6)

Similarly, as the samples in X N only have the 2-D footprint
annotations, the loss function (denoted by LX N ) is defined
as the footprint segmentation loss according to the following
equation:

LX N = L f . (7)

The final hybrid loss is defined as the total loss of the
three categories of training samples according to the following
equation:

L = LX F + LX P + LX N . (8)

D. Vectorization of the 3-D Models

After obtaining the outputs of the WS-MTBR-Net, we apply
a simple but effective vectorization method to integrate the
network outputs into the final 3-D building model, which
is constituted by a roof polygon, a footprint polygon, and
an instancewise height vector. Different from our previous
work [14] that uses a height vector optimization strategy based
on multiple types of network outputs, we simply calculate
the average offset field values in the roof region as the
instancewise offset vector for each building, which can be
converted to the actual height according to Section III-A.

The process of constructing roof and footprint polygons is
similar to the one used in our previous work [14]. Specifically,
based on the prediction of the roof boundary orientation, the
raster roof segments can be vectorized into polygons with valid
shapes. For each densely sampled vertex of the roof segment
contour, if the absolute difference in orientation class between
the vertex and its neighbor vertex is greater than three, the
vertex will be selected as valid and remained. The remaining
valid vertices constitute the simplified roof polygon, which
will be warped as the footprint polygon based on the offset
vector. The simplified roof polygon, footprint polygon, and
height vector comprise the final vector 3-D building model.

IV. EXPERIMENTAL RESULTS ANALYSIS

A. Datasets

In our experiments, we evaluate the 3-D building recon-
struction results in terms of the height estimation performance
and the footprint segmentation performance on the BONAI
dataset proposed in our previous work [15], which provides
holistic 3-D building annotations for both footprint segmenta-
tion and height estimation. We also analyze the effect of using
additional footprint segmentation datasets as the extra training
dataset on improving the footprint segmentation performance.
The details are introduced as follows.
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1) Our Previously Proposed BONAI Dataset [15]: We
evaluate the proposed method on the BONAI dataset [15]
for 3-D building reconstruction from monocular remote sens-
ing images. The dataset includes over 200 000 manually
annotated building footprints and the corresponding height
vectors, which solves the limitations of the existing datasets
and can be used for the evaluation of both the aspects.
The images are collected from different data sources (e.g.,
Google Earth and Microsoft Virtual Earth) with a diversity of
view angles. Our BONAI dataset [15] contains 2700 training
images, 300 validation images and 300 test images, which are
in a size of 1024 × 1024 pixels. The training and validation
images of BONAI are collected from five cities of China,
i.e., Shanghai, Beijing, Harbin, Jinan, and Chengdu. Moreover,
BONAI contains two test datasets: 1) BONAI Shanghai dataset
(the in-domain dataset in [14]), which contains 200 images
located in the same city but different regions with the training
images; and 2) BONAI Xi’an dataset (the out-domain dataset
in [14]), which contains 100 images located in a new city that
is not included in the training images. The whole dataset can
be downloaded from https://github.com/jwwangchn/BONAI.

2) Extra Building Footprint Datasets: Besides the BONAI
dataset [15], we use some additional public building footprint
datasets to analyze its effect on improving the footprint
segmentation performance, including the SpaceNet DeepGlobe
dataset [21], the Microsoft Global building dataset [17], and
WHU building dataset [20]. As the Microsoft Global building
dataset only provides the footprint annotations without the
original imagery, we download the Google Earth imagery
corresponding to the Salt Lake City area following [38] and
crop the image to obtain the training samples of this dataset.
The above three datasets constitute the extra 2-D-annotated
dataset (denoted by X E ).

B. Evaluation Metrics

We evaluate the 3-D building reconstruction results from
two aspects, i.e., the offset vector prediction performance
and the footprint segmentation performance. The offset vector
prediction performance is evaluated in terms of the endpoint
error (denoted by EPE, in pixels) [10], [14], [15], i.e., the
Euclidean distance between the endpoints of the predicted
offset vector and ground-truth offset vector. We also report
the EPE of the building instances within different offset
length ranges and the average EPE of all the instances (in
pixels). For the footprint segmentation performance, we use
the instance-level evaluation metrics to evaluate the footprint
segmentation results. Specifically, we calculate the precision,
recall, and F1-score under the IoU threshold of 0.5, which
have been widely used in previous building segmentation
studies and challenges [19], [21], [38]. Furthermore, the size
and computation complexity of our model are, respectively,
evaluated in terms of the number of parameters and the
FLoating point OPerations (FLOPs).

C. Experimental Settings and Comparison Methods

In the training process of our WS-MTBR-Net, the orig-
inal images of all the datasets are randomly cropped into

500 × 500 pixels due to memory limitation. For LX F cal-
culation, we set higher weights for the roof segmentation
and footprint segmentation tasks following [14], i.e., α1 and
α2 are set as 3. We use random rotation, cropping, scaling,
flipping, and Gaussian blur for data augmentation. We train
the WS-MTBR-Net on 16 NVIDIA Titan Xp GPUs using
stochastic gradient descent (SGD) as the optimizer, with a
batch size of 16 for 2000 epochs, an initial learning rate of
0.01, a momentum of 0.9, and a weight decay of 10−4. Under
the above settings, the FLOPs of our model is 192.12 G and
the number of parameters is 26.62 M.

For evaluating the building height estimation results,
we provide a thorough comparison between our method
and the state-of-the-art methods designed for pixelwise off-
set estimation from monocular off-nadir images, including
Christie et al. (CVPR 2020) [9] and MTBR-Net (ICCV 2021)
[14]. For Christie et al. [9], we replace the flow vector
prediction task with the visible part offset prediction task
and replace the U-Net with the HR-Net architecture for a
fair comparison with our method following [14]. For MTBR-
Net [14], we remove the height vector optimization strategy
(w/o optimization in [14]) to guarantee a fair comparison of
the MTBR-Net and WS-MTBR-Net architectures in terms of
the offset prediction performance.

For evaluating the building footprint segmentation results,
we compare our results with those of three instance segmenta-
tion methods (Mask R-CNN [61], Cascade Mask R-CNN [62],
and PANet [63]) and the HR-Net-based semantic segmentation
method [58]. We use ResNet-50 [64] pretrained on the Ima-
geNet [65] with FPN [66] as the backbone of the three instance
segmentation methods. All three methods are trained with a
batch size of 32 on 16 NVIDIA Titan Xp GPUs for 24 epochs
and a learning rate starting from 0.02 and decreasing by a fac-
tor of 0.1 at the 16th and 22nd epoch, using SGD with a weight
decay of 0.0001 and a momentum of 0.9 as the optimizer,
which are implemented based on mmdetection [67] with the
default data augmentation and recommended hyperparameter
settings. We use the same data augmentation, hyperparameter
setting, and backbone architecture as our approach for the
HR-Net-based semantic segmentation method [58]. We also
compare our method with the two state-of-the-art methods
for building footprint extraction on the BONAI datasets, i.e.,
MTBR-Net (ICCV 2021) [14] and LOFT (TPAMI 2022) [15].
For MTBR-Net [14], we use the same experimental settings
as those used for height estimation evaluation. For LOFT [15],
we use the default experimental settings and models pro-
vided by the authors to evaluate the footprint segmentation
performance.

D. Building Height Estimation

In this section, we compare the height estimation perfor-
mance of our method with two state-of-the-art methods for
pixelwise offset estimation on the BONAI Shanghai and Xi’an
test datasets. Table II lists the EPE of the roof instances in dif-
ferent height ranges (the offset vector length, in pixels) and the
average EPE of all the instances obtained from different meth-
ods. We report the height estimation metrics of our method
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Fig. 6. Examples of height estimation results of different methods on the BONAI Shanghai test dataset. Different colors represent different offset angles.
The brightness of each color reflects the offset length.

Fig. 7. Examples of height estimation results of different methods on the BONAI Xi’an test dataset. Different colors represent different offset angles. The
brightness of each color reflects the offset length.

under two settings, i.e., the fully supervised training with the
whole 3-D-annotated samples (denoted as full) and the weakly
supervised training with 50% 3-D-annotated samples + 50%
2-D-annotated samples (denoted as partial). The results show
that our method can reduce the EPE compared with the other
three methods when using the same training set, achieving a

significant performance gain for high-rise buildings. Moreover,
our method achieves better performance when only using 50%
3-D-annotated samples compared with the results of [9] when
using all 3-D-annotated samples, indicating the effectiveness
of our method for weakly supervised building reconstruction
with fewer 3-D labels. Figs. 6 and 7 provide a qualitative
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TABLE II
BUILDING HEIGHT ESTIMATION RESULTS OBTAINED FROM DIFFERENT METHODS IN TERMS OF EPE. WE REPORT THE EPE OF THE ROOF INSTANCES

WITHIN DIFFERENT HEIGHT RANGES AND THE AVERAGE EPE OF ALL INSTANCES. OUR METHOD SIGNIFICANTLY REDUCES THE EPE OF
HIGH-RISE BUILDINGS COMPARED WITH OTHER THREE METHODS WHEN USING THE SAME TRAINING SET (FULL), AND ACHIEVES

BETTER PERFORMANCE WHEN ONLY USING 50% 3-D-ANNOTATED SAMPLES (PARTIAL) COMPARED WITH [9]

TABLE III
BUILDING FOOTPRINT SEGMENTATION RESULTS OF DIFFERENT METH-

ODS, IN TERMS OF PRECISION, RECALL, AND F1-SCORE (%).
OUR METHOD IMPROVES THE F1-SCORE BY 4.8%–16.0% COM-

PARED WITH THE OTHER METHODS WHEN USING THE SAME
3-D-ANNOTATED TRAINING SAMPLES

comparison between our method and the two state-of-the-art
methods on the BONAI Shanghai and Xi’an test datasets,
respectively. The results demonstrate that the height estimation
results obtained from our method have more accurate offset
values and clearer building boundaries.

E. Building Footprint Segmentation

In this section, we compare the footprint segmentation
performance of our method with several competitive instance
and semantic segmentation methods [58], [61], [62], [63], [68],
and the two state-of-the-art methods for extracting building
footprints from off-nadir images, i.e., MTBR-Net [14] and
LOFT [15]. Table III lists the segmentation performance of
different methods on the BONAI Shanghai and Xi’an test
datasets, in terms of precision, recall, and F1-score (with the
IoU threshold of 0.5) at instance level following [21], [37].
A qualitative comparison of footprint segmentation results on
the BONAI Shanghai and Xi’an test datasets is provided in
Figs. 8 and 9, respectively. Note that all the experimental
results in this section are derived using the same 3-D-annotated
training samples, and the experimental results using the extra
2-D-annotated datasets will be analyzed in Section IV-F. The
experimental results demonstrate that our method significantly
improves the F1-score by 4.8%–16.0% compared with the
instance and semantic segmentation methods that directly
extract the building footprints. Moreover, our method improves
the F1-score by 0.9%–4.2% compared with MTBR-Net and
LOFT that are specifically designed for extracting off-nadir
building footprints based on roof segmentation results and
offset prediction results. The performance gain also indicates

TABLE IV
INFLUENCE OF FEATURE WARPING MODULE ON THE PERFORMANCE OF

OUR METHOD, IN TERMS OF THE FOOTPRINT SEGMENTATION
F1-SCORE (%)AND THE HEIGHT ESTIMATION

EPE (IN PIXELS)

the effectiveness of using the predicted footprint offset to warp
the roof segmentation feature map for footprint segmentation.

F. Ablation Study

1) Influence of the Feature Warping Module: To evaluate
the effect of the improved feature warping module pro-
posed in our WS-MTBR-Net, we analyze the performance
obtained from different feature warping strategies using the
same 3-D-annotated training samples. Table IV lists the
results on our test datasets in terms of the footprint seg-
mentation F1-score and the height estimation EPE. The first
row shows the results obtained from the multitask HR-Net
based on the shared feature map (without feature warping
module). The second row shows the results when using the
original feature warping module following MTBR-Net [14].
The third row shows the results obtained using the improved
feature warping module proposed in our WS-MTBR-Net.
Compared with using the shared feature map and the original
feature warping module in [14], the performance of both foot-
print segmentation and height estimation could be improved
when using the improved feature warping module.

2) Influence of the Hybrid Loss: To further evaluate the
effect of using different combinations of the hybrid loss
in our WS-MTBR-Net, we analyze the performance of our
method obtained from the training sets with different super-
vision levels. As shown in Table V, the first row lists the
baseline results obtained from the original HR-Net (without
feature map warping) trained by the 2-D-annotated footprint
dataset. The second row (X F

+ X N ) shows the results of
our WS-MTBR-Net when using 50% 3-D-annotated training
samples and 50% 2-D-annotated training samples. The third
row (X F

+X P ) shows the results obtained from using 50% 3-
D-annotated training samples and 50% training samples with
pixel-level 2-D annotations and image-level 3-D annotations.
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Fig. 8. Examples of building footprint segmentation results of different methods on the BONAI Shanghai test dataset. The yellow, cyan, and red polygons
denote the TP, FP, and FN, respectively. Our method produces much more accurate footprint boundaries compared with other methods.

TABLE V
PERFORMANCE OF OUR METHOD OBTAINED FROM DIFFERENT SUPER-

VISION LEVELS, IN TERMS OF THE FOOTPRINT SEGMENTATION
F1-SCORE (%) AND THE HEIGHT ESTIMATION

EPE (IN PIXELS)

The fourth row (X F
+X F ) shows the results obtained from the

whole 3-D-annotated training samples. The final row (X F
+

X F
+ X E ) shows the results obtained from using the whole

3-D-annotated training samples and the extra 2-D-annotated
training samples. The results demonstrate that the footprint
segmentation F1-score can be improved by 4.6% and 15.3%
when using our WS-MTBR-Net with 50% 3-D-annotated
training samples. Moreover, the footprint segmentation and
height estimation performance can be successively improved
via adding additional supervision types or extra training
samples, with the best F1-score and EPE obtained from
training with the whole 3-D-annotated samples and extra 2-D-
annotated samples.

3) Influence of the Training Sample Percentage: To evaluate
the effect of using different training set sizes starting from

TABLE VI
PERFORMANCE OF OUR METHOD USING DIFFERENT PERCENTAGES OF

FULLY ANNOTATED TRAINING SAMPLES (X F ), IN TERMS OF THE
FOOTPRINT SEGMENTATION F1-SCORE (%) AND THE HEIGHT

ESTIMATION EPE (IN PIXELS)

very low percentages, we analyze the performance of our
WS-MTBR-Net using different percentages of fully annotated
training samples (X F ) ranging from 10% to 50%. As shown
in Table VI, with the percentage of fully annotated training
samples increases, the offset vector prediction performance
and the footprint segmentation performance improve. In addi-
tion, when the percentage fully annotated training samples is
very low, the offset vector prediction results become poor,
and incorrect offset vector prediction will further lead to poor
footprint segmentation results.

G. Limitation Analysis

There are several limitations of our method in terms of
footprint segmentation and height estimation performance,
especially in difficult scenarios. Fig. 10 demonstrates some
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Fig. 9. Examples of building footprint segmentation results of different methods on the BONAI Xi’an test dataset. The yellow, cyan, and red polygons
denote the TP, FP, and FN, respectively. Our method produces much more accurate footprint boundaries compared with other methods.

Fig. 10. Some typical failures of footprint segmentation results. The yellow,
cyan, and red polygons denote the TP, FP, and FN, respectively.

typical failure cases of footprint segmentation results. For
buildings with complex shapes (the first row), our model
may produce footprint segmentation results with inaccurate
boundaries. For densely distributed buildings (the second row),
our model may incorrectly extract multiple buildings as one
building. Fig. 11 demonstrates some typical failure cases of
height prediction results. Due to the shadow effect in high-rise
buildings or small facades in low-rise buildings, our model

Fig. 11. Some typical failures of height estimation results. Different colors
represent different offset angles. The brightness of each color reflects the
offset length.

may predict inaccurate offset orientation angles (the first row)
and offset lengths (the second row).

V. CONCLUSION

In this article, we have presented a new method for
weakly supervised building reconstruction from monocular
remote sensing images, which is capable of reconstructing the
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accurate 3-D building models with fewer 3-D labels. Qualita-
tive and quantitative evaluations demonstrate that our approach
achieves significant performance gain compared with the state-
of-the-art under different experiment settings. The effect of
the improved feature warping module and using different
combinations of the hybrid loss to train our WS-MTBR-Net
is also analyzed in the ablation study. To the best of our
knowledge, this is the first weakly supervised approach for
3-D building reconstruction from monocular remote sensing
images. We believe that our method provides effective and
economic solutions for 3-D building reconstruction in complex
real-world scenes and significantly reduces the demand for
large-scale expensive 3-D annotations. In our future work,
we would like to explore more effective strategies for improv-
ing the 3-D reconstruction performance and explore weakly
supervised approaches for 3-D building reconstruction and city
modeling from multiview imagery or multimodal data.
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